人体姿态估计与旋转几何模糊

Bo Chen, N. Nguyen, Greg Mori
{"title":"人体姿态估计与旋转几何模糊","authors":"Bo Chen, N. Nguyen, Greg Mori","doi":"10.1109/WACV.2008.4544022","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating the pose of a human figure in a single image. Our method uses an exemplar-matching framework, where a test image is matched to a database of exemplars upon which body joint positions have been marked. We find the best matching exemplar for a test image by employing a variant of an existing deformable template matching framework. A hierarchical correspondence process is developed to improve the efficiency of the existing framework. Quantitative results on the CMUMoBo dataset verify the effectiveness of our approach.","PeriodicalId":439571,"journal":{"name":"2008 IEEE Workshop on Applications of Computer Vision","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Human Pose Estimation with Rotated Geometric Blur\",\"authors\":\"Bo Chen, N. Nguyen, Greg Mori\",\"doi\":\"10.1109/WACV.2008.4544022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of estimating the pose of a human figure in a single image. Our method uses an exemplar-matching framework, where a test image is matched to a database of exemplars upon which body joint positions have been marked. We find the best matching exemplar for a test image by employing a variant of an existing deformable template matching framework. A hierarchical correspondence process is developed to improve the efficiency of the existing framework. Quantitative results on the CMUMoBo dataset verify the effectiveness of our approach.\",\"PeriodicalId\":439571,\"journal\":{\"name\":\"2008 IEEE Workshop on Applications of Computer Vision\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Workshop on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2008.4544022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Workshop on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2008.4544022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑了单幅图像中人体姿态的估计问题。我们的方法使用示例匹配框架,其中测试图像与已标记身体关节位置的示例数据库相匹配。我们通过使用现有可变形模板匹配框架的变体来找到测试图像的最佳匹配范例。为了提高现有框架的效率,开发了一种分层对应过程。CMUMoBo数据集上的定量结果验证了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Pose Estimation with Rotated Geometric Blur
We consider the problem of estimating the pose of a human figure in a single image. Our method uses an exemplar-matching framework, where a test image is matched to a database of exemplars upon which body joint positions have been marked. We find the best matching exemplar for a test image by employing a variant of an existing deformable template matching framework. A hierarchical correspondence process is developed to improve the efficiency of the existing framework. Quantitative results on the CMUMoBo dataset verify the effectiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信