度量g空间上拓扑g共轭的g -强链循环点和g -链等价点

Zhanjiang Ji, Jing-Xian Tu
{"title":"度量g空间上拓扑g共轭的g -强链循环点和g -链等价点","authors":"Zhanjiang Ji, Jing-Xian Tu","doi":"10.1109/ICVRIS.2019.00075","DOIUrl":null,"url":null,"abstract":"In this paper, we study the dynamical properties of G-strong chain recurrent point, G-chain point set and G-chain equivalent point of topological G-conjugacy on metric G-space. By inference, we give the following conclusions that if let f_1: X → X and f_2: Y → Y be two continous map of metric G-space X and Y. Suppose the map h: X → Y is a topogical G-conjugacy from f_1 to f_2, then (1)h(SCR_G ( f_1)) = SCR_G ( f_2 ); (2)h(S_G (x, f_1)) = S_G (h(x), f_2 ); (3)h(CE_G (x, f_1)) = CE_G (h(x), f_2 ). These results will enrich the theory of G-strong chain recurrent point, G-chain point and G-chain equivalent point of topological G-conjugacy on metric G-space.","PeriodicalId":294342,"journal":{"name":"2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"G-Strong Chain Recurrent Point and G-Chain Equivalent Point of Topological G-Conjugacy on Metric G-Space\",\"authors\":\"Zhanjiang Ji, Jing-Xian Tu\",\"doi\":\"10.1109/ICVRIS.2019.00075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the dynamical properties of G-strong chain recurrent point, G-chain point set and G-chain equivalent point of topological G-conjugacy on metric G-space. By inference, we give the following conclusions that if let f_1: X → X and f_2: Y → Y be two continous map of metric G-space X and Y. Suppose the map h: X → Y is a topogical G-conjugacy from f_1 to f_2, then (1)h(SCR_G ( f_1)) = SCR_G ( f_2 ); (2)h(S_G (x, f_1)) = S_G (h(x), f_2 ); (3)h(CE_G (x, f_1)) = CE_G (h(x), f_2 ). These results will enrich the theory of G-strong chain recurrent point, G-chain point and G-chain equivalent point of topological G-conjugacy on metric G-space.\",\"PeriodicalId\":294342,\"journal\":{\"name\":\"2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVRIS.2019.00075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRIS.2019.00075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了度量g空间上拓扑g共轭的g -强链循环点、g -链点集和g -链等价点的动力学性质。通过推理,我们得到如下结论:设f_1: X→X和f_2: Y→Y是度量g空间X和Y的两个连续映射,设映射h: X→Y是一个从f_1到f_2的拓扑g共轭,则(1)h(SCR_G (f_1)) = SCR_G (f_2);(2)h(S_G (x, f_1)) = S_G (h(x), f_2)(3)h(CE_G (x, f_1)) = CE_G (h(x), f_2)。这些结果将丰富度量g空间上拓扑g共轭的g强链循环点、g链点和g链等价点的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
G-Strong Chain Recurrent Point and G-Chain Equivalent Point of Topological G-Conjugacy on Metric G-Space
In this paper, we study the dynamical properties of G-strong chain recurrent point, G-chain point set and G-chain equivalent point of topological G-conjugacy on metric G-space. By inference, we give the following conclusions that if let f_1: X → X and f_2: Y → Y be two continous map of metric G-space X and Y. Suppose the map h: X → Y is a topogical G-conjugacy from f_1 to f_2, then (1)h(SCR_G ( f_1)) = SCR_G ( f_2 ); (2)h(S_G (x, f_1)) = S_G (h(x), f_2 ); (3)h(CE_G (x, f_1)) = CE_G (h(x), f_2 ). These results will enrich the theory of G-strong chain recurrent point, G-chain point and G-chain equivalent point of topological G-conjugacy on metric G-space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信