{"title":"度量g空间上拓扑g共轭的g -强链循环点和g -链等价点","authors":"Zhanjiang Ji, Jing-Xian Tu","doi":"10.1109/ICVRIS.2019.00075","DOIUrl":null,"url":null,"abstract":"In this paper, we study the dynamical properties of G-strong chain recurrent point, G-chain point set and G-chain equivalent point of topological G-conjugacy on metric G-space. By inference, we give the following conclusions that if let f_1: X → X and f_2: Y → Y be two continous map of metric G-space X and Y. Suppose the map h: X → Y is a topogical G-conjugacy from f_1 to f_2, then (1)h(SCR_G ( f_1)) = SCR_G ( f_2 ); (2)h(S_G (x, f_1)) = S_G (h(x), f_2 ); (3)h(CE_G (x, f_1)) = CE_G (h(x), f_2 ). These results will enrich the theory of G-strong chain recurrent point, G-chain point and G-chain equivalent point of topological G-conjugacy on metric G-space.","PeriodicalId":294342,"journal":{"name":"2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"G-Strong Chain Recurrent Point and G-Chain Equivalent Point of Topological G-Conjugacy on Metric G-Space\",\"authors\":\"Zhanjiang Ji, Jing-Xian Tu\",\"doi\":\"10.1109/ICVRIS.2019.00075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the dynamical properties of G-strong chain recurrent point, G-chain point set and G-chain equivalent point of topological G-conjugacy on metric G-space. By inference, we give the following conclusions that if let f_1: X → X and f_2: Y → Y be two continous map of metric G-space X and Y. Suppose the map h: X → Y is a topogical G-conjugacy from f_1 to f_2, then (1)h(SCR_G ( f_1)) = SCR_G ( f_2 ); (2)h(S_G (x, f_1)) = S_G (h(x), f_2 ); (3)h(CE_G (x, f_1)) = CE_G (h(x), f_2 ). These results will enrich the theory of G-strong chain recurrent point, G-chain point and G-chain equivalent point of topological G-conjugacy on metric G-space.\",\"PeriodicalId\":294342,\"journal\":{\"name\":\"2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVRIS.2019.00075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRIS.2019.00075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
G-Strong Chain Recurrent Point and G-Chain Equivalent Point of Topological G-Conjugacy on Metric G-Space
In this paper, we study the dynamical properties of G-strong chain recurrent point, G-chain point set and G-chain equivalent point of topological G-conjugacy on metric G-space. By inference, we give the following conclusions that if let f_1: X → X and f_2: Y → Y be two continous map of metric G-space X and Y. Suppose the map h: X → Y is a topogical G-conjugacy from f_1 to f_2, then (1)h(SCR_G ( f_1)) = SCR_G ( f_2 ); (2)h(S_G (x, f_1)) = S_G (h(x), f_2 ); (3)h(CE_G (x, f_1)) = CE_G (h(x), f_2 ). These results will enrich the theory of G-strong chain recurrent point, G-chain point and G-chain equivalent point of topological G-conjugacy on metric G-space.