一种8.93-TOPS/W的分层粗粒稀疏LSTM递归神经网络加速器

Deepak Kadetotad, Visar Berisha, C. Chakrabarti, Jae-sun Seo
{"title":"一种8.93-TOPS/W的分层粗粒稀疏LSTM递归神经网络加速器","authors":"Deepak Kadetotad, Visar Berisha, C. Chakrabarti, Jae-sun Seo","doi":"10.1109/ESSCIRC.2019.8902809","DOIUrl":null,"url":null,"abstract":"Long short-term memory (LSTM) networks are widely used for speech applications but pose difficulties for efficient implementation on hardware due to large weight storage requirements. We present an energy-efficient LSTM recurrent neural network (RNN) accelerator, featuring an algorithm-hardware co-optimized memory compression technique called hierarchical coarse-grain sparsity (HCGS). Aided by HCGS-based block-wise recursive weight compression, we demonstrate LSTM networks with up to 16× fewer weights while achieving minimal accuracy loss. The prototype chip fabricated in 65-nm LP CMOS achieves 8.93/7.22 TOPS/W for 2-/3-layer LSTM RNNs trained with HCGS for TIMIT/TED-LIUM corpora.","PeriodicalId":402948,"journal":{"name":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A 8.93-TOPS/W LSTM Recurrent Neural Network Accelerator Featuring Hierarchical Coarse-Grain Sparsity With All Parameters Stored On-Chip\",\"authors\":\"Deepak Kadetotad, Visar Berisha, C. Chakrabarti, Jae-sun Seo\",\"doi\":\"10.1109/ESSCIRC.2019.8902809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long short-term memory (LSTM) networks are widely used for speech applications but pose difficulties for efficient implementation on hardware due to large weight storage requirements. We present an energy-efficient LSTM recurrent neural network (RNN) accelerator, featuring an algorithm-hardware co-optimized memory compression technique called hierarchical coarse-grain sparsity (HCGS). Aided by HCGS-based block-wise recursive weight compression, we demonstrate LSTM networks with up to 16× fewer weights while achieving minimal accuracy loss. The prototype chip fabricated in 65-nm LP CMOS achieves 8.93/7.22 TOPS/W for 2-/3-layer LSTM RNNs trained with HCGS for TIMIT/TED-LIUM corpora.\",\"PeriodicalId\":402948,\"journal\":{\"name\":\"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC.2019.8902809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2019.8902809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

长短期记忆(LSTM)网络在语音应用中得到了广泛的应用,但由于其巨大的重量存储要求,使得其难以在硬件上有效实现。我们提出了一种节能的LSTM递归神经网络(RNN)加速器,它采用了一种称为分层粗粒稀疏(HCGS)的算法-硬件协同优化的内存压缩技术。在基于hcgs的块递归权重压缩的帮助下,我们展示了LSTM网络的权重减少了16倍,同时实现了最小的精度损失。在65nm LP CMOS中制造的原型芯片对于使用HCGS训练的2 /3层LSTM rnn在TIMIT/TED-LIUM语料库中实现了8.93/7.22 TOPS/W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 8.93-TOPS/W LSTM Recurrent Neural Network Accelerator Featuring Hierarchical Coarse-Grain Sparsity With All Parameters Stored On-Chip
Long short-term memory (LSTM) networks are widely used for speech applications but pose difficulties for efficient implementation on hardware due to large weight storage requirements. We present an energy-efficient LSTM recurrent neural network (RNN) accelerator, featuring an algorithm-hardware co-optimized memory compression technique called hierarchical coarse-grain sparsity (HCGS). Aided by HCGS-based block-wise recursive weight compression, we demonstrate LSTM networks with up to 16× fewer weights while achieving minimal accuracy loss. The prototype chip fabricated in 65-nm LP CMOS achieves 8.93/7.22 TOPS/W for 2-/3-layer LSTM RNNs trained with HCGS for TIMIT/TED-LIUM corpora.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信