{"title":"非均相形核对铸铝晶粒细化的影响","authors":"Yoshimi Watanabe, H. Sato","doi":"10.1201/9781351045636-140000214","DOIUrl":null,"url":null,"abstract":"Grain refinement plays a vital role in cast and wrought Al alloys. To achieve a grain refined cast microstructure, addition of Al-Ti, Al-Ti-B, and Al-Ti-C refiners has become a common industrial practice. The refiners introduce a large number of particles such as Al3Ti, TiB2, or TiC into the Al melt, and these particles act as heterogeneous nucleation sites for α-Al grains. In this article, some of the main theories of grain refining by refiners, and the crystal structure and shape of Al3Ti in Al-Ti refiner are briefly summarized to outline the physical aspects of grain refinement. Then, our results on grain refining performance of pure Al casts by equal-channel angular-pressed Al-11vol%Al3Ti refiner, cold-rolled Al-11vol%Al3Ti refiner, Al-10vol%Ti refiner, and Al-10vol% L12-type Al2.7Fe0.3Ti refiner will be described. Fragmentation behavior of Al3Ti platelets in Al-Ti refiner by friction stir processing is also presented.","PeriodicalId":348912,"journal":{"name":"Encyclopedia of Aluminum and Its Alloys","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grain Refinement of Cast Aluminum by Heterogeneous Nucleation Sites\",\"authors\":\"Yoshimi Watanabe, H. Sato\",\"doi\":\"10.1201/9781351045636-140000214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grain refinement plays a vital role in cast and wrought Al alloys. To achieve a grain refined cast microstructure, addition of Al-Ti, Al-Ti-B, and Al-Ti-C refiners has become a common industrial practice. The refiners introduce a large number of particles such as Al3Ti, TiB2, or TiC into the Al melt, and these particles act as heterogeneous nucleation sites for α-Al grains. In this article, some of the main theories of grain refining by refiners, and the crystal structure and shape of Al3Ti in Al-Ti refiner are briefly summarized to outline the physical aspects of grain refinement. Then, our results on grain refining performance of pure Al casts by equal-channel angular-pressed Al-11vol%Al3Ti refiner, cold-rolled Al-11vol%Al3Ti refiner, Al-10vol%Ti refiner, and Al-10vol% L12-type Al2.7Fe0.3Ti refiner will be described. Fragmentation behavior of Al3Ti platelets in Al-Ti refiner by friction stir processing is also presented.\",\"PeriodicalId\":348912,\"journal\":{\"name\":\"Encyclopedia of Aluminum and Its Alloys\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Encyclopedia of Aluminum and Its Alloys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781351045636-140000214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Aluminum and Its Alloys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781351045636-140000214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Grain Refinement of Cast Aluminum by Heterogeneous Nucleation Sites
Grain refinement plays a vital role in cast and wrought Al alloys. To achieve a grain refined cast microstructure, addition of Al-Ti, Al-Ti-B, and Al-Ti-C refiners has become a common industrial practice. The refiners introduce a large number of particles such as Al3Ti, TiB2, or TiC into the Al melt, and these particles act as heterogeneous nucleation sites for α-Al grains. In this article, some of the main theories of grain refining by refiners, and the crystal structure and shape of Al3Ti in Al-Ti refiner are briefly summarized to outline the physical aspects of grain refinement. Then, our results on grain refining performance of pure Al casts by equal-channel angular-pressed Al-11vol%Al3Ti refiner, cold-rolled Al-11vol%Al3Ti refiner, Al-10vol%Ti refiner, and Al-10vol% L12-type Al2.7Fe0.3Ti refiner will be described. Fragmentation behavior of Al3Ti platelets in Al-Ti refiner by friction stir processing is also presented.