利用视觉变压器识别葡萄品种

G. Carneiro, L. Pádua, Emanuel Peres, R. Morais, J. Sousa, António Cunha
{"title":"利用视觉变压器识别葡萄品种","authors":"G. Carneiro, L. Pádua, Emanuel Peres, R. Morais, J. Sousa, António Cunha","doi":"10.1109/IGARSS46834.2022.9883286","DOIUrl":null,"url":null,"abstract":"The grape variety plays an important role in the wine production chain, thus identifying it is crucial for production control. Ampelographers, professionals who identify grape varieties through plant visual analysis, are scarce, and molecular markers are expansive to identify grape varieties on a large scale. In this context, Deep Learning models become an effective way to handle ampelographers scarcity. In this work, we explore the benefit of using deep learning vision transformers architecture relative to conventional CNN to identify 12 grapevine varieties using leaf-centred RGB images acquired in the field. We train an Xception model as a baseline and four different configurations of the ViT_B model. The best model achieved 0.96 of Fl-score, outperforming the state-of-the-art convolutional-based model in the used dataset.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Grapevine Varieties Identification Using Vision Transformers\",\"authors\":\"G. Carneiro, L. Pádua, Emanuel Peres, R. Morais, J. Sousa, António Cunha\",\"doi\":\"10.1109/IGARSS46834.2022.9883286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The grape variety plays an important role in the wine production chain, thus identifying it is crucial for production control. Ampelographers, professionals who identify grape varieties through plant visual analysis, are scarce, and molecular markers are expansive to identify grape varieties on a large scale. In this context, Deep Learning models become an effective way to handle ampelographers scarcity. In this work, we explore the benefit of using deep learning vision transformers architecture relative to conventional CNN to identify 12 grapevine varieties using leaf-centred RGB images acquired in the field. We train an Xception model as a baseline and four different configurations of the ViT_B model. The best model achieved 0.96 of Fl-score, outperforming the state-of-the-art convolutional-based model in the used dataset.\",\"PeriodicalId\":426003,\"journal\":{\"name\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS46834.2022.9883286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9883286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

葡萄品种在葡萄酒生产链中起着重要的作用,因此对其进行识别对生产控制至关重要。通过植物视觉分析来鉴定葡萄品种的专业人员Ampelographers是稀缺的,而分子标记在大规模鉴定葡萄品种方面是广泛的。在这种背景下,深度学习模型成为处理能手稀缺的有效方法。在这项工作中,我们探索了使用深度学习视觉转换器架构相对于传统CNN的好处,使用在现场获得的以叶子为中心的RGB图像识别12种葡萄藤品种。我们训练异常模型作为基线和ViT_B模型的四种不同配置。最好的模型达到了0.96的Fl-score,在使用的数据集中优于最先进的基于卷积的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grapevine Varieties Identification Using Vision Transformers
The grape variety plays an important role in the wine production chain, thus identifying it is crucial for production control. Ampelographers, professionals who identify grape varieties through plant visual analysis, are scarce, and molecular markers are expansive to identify grape varieties on a large scale. In this context, Deep Learning models become an effective way to handle ampelographers scarcity. In this work, we explore the benefit of using deep learning vision transformers architecture relative to conventional CNN to identify 12 grapevine varieties using leaf-centred RGB images acquired in the field. We train an Xception model as a baseline and four different configurations of the ViT_B model. The best model achieved 0.96 of Fl-score, outperforming the state-of-the-art convolutional-based model in the used dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信