经典算法在高线程多核gpu上的理论分析

Lin Ma, Kunal Agrawal, R. Chamberlain
{"title":"经典算法在高线程多核gpu上的理论分析","authors":"Lin Ma, Kunal Agrawal, R. Chamberlain","doi":"10.1145/2555243.2555285","DOIUrl":null,"url":null,"abstract":"The Threaded many-core memory (TMM) model provides a framework to analyze the performance of algorithms on GPUs. Here, we investigate the effectiveness of the TMM model by analyzing algorithms for 3 classic problems -- suffix tree/array for string matching, fast Fourier transform, and merge sort -- under this model. Our findings indicate that the TMM model can explain and predict previously unexplained trends and artifacts in experimental data.","PeriodicalId":286119,"journal":{"name":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Theoretical analysis of classic algorithms on highly-threaded many-core GPUs\",\"authors\":\"Lin Ma, Kunal Agrawal, R. Chamberlain\",\"doi\":\"10.1145/2555243.2555285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Threaded many-core memory (TMM) model provides a framework to analyze the performance of algorithms on GPUs. Here, we investigate the effectiveness of the TMM model by analyzing algorithms for 3 classic problems -- suffix tree/array for string matching, fast Fourier transform, and merge sort -- under this model. Our findings indicate that the TMM model can explain and predict previously unexplained trends and artifacts in experimental data.\",\"PeriodicalId\":286119,\"journal\":{\"name\":\"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2555243.2555285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2555243.2555285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

线程多核内存(TMM)模型为分析gpu上的算法性能提供了一个框架。在这里,我们通过分析该模型下3个经典问题(字符串匹配的后缀树/数组、快速傅立叶变换和归并排序)的算法来研究TMM模型的有效性。我们的研究结果表明,TMM模型可以解释和预测实验数据中先前无法解释的趋势和伪影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical analysis of classic algorithms on highly-threaded many-core GPUs
The Threaded many-core memory (TMM) model provides a framework to analyze the performance of algorithms on GPUs. Here, we investigate the effectiveness of the TMM model by analyzing algorithms for 3 classic problems -- suffix tree/array for string matching, fast Fourier transform, and merge sort -- under this model. Our findings indicate that the TMM model can explain and predict previously unexplained trends and artifacts in experimental data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信