使用全局特征图的视觉地图匹配和定位

O. Pink
{"title":"使用全局特征图的视觉地图匹配和定位","authors":"O. Pink","doi":"10.1109/CVPRW.2008.4563135","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method to support environmental perception of mobile robots by the use of a global feature map. While typical approaches to simultaneous localization and mapping (SLAM) mainly rely on an on-board camera for mapping, our approach uses geographically referenced aerial or satellite images to build a map in advance. The current position on the map is determined by matching features from the on-board camera to the global feature map. The problem of feature matching is posed as a standard point pattern matching problem and a solution using the iterative closest point method is given. The proposed algorithm is designed for use in a street vehicle and uses lane markings as features, but can be adapted to almost any other type of feature that is visible in aerial images. Our approach allows for estimating the robot position at a higher precision than by a purely GPS-based localization, while at the same time providing information about the environment far beyond the current field of view.","PeriodicalId":102206,"journal":{"name":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":"{\"title\":\"Visual map matching and localization using a global feature map\",\"authors\":\"O. Pink\",\"doi\":\"10.1109/CVPRW.2008.4563135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel method to support environmental perception of mobile robots by the use of a global feature map. While typical approaches to simultaneous localization and mapping (SLAM) mainly rely on an on-board camera for mapping, our approach uses geographically referenced aerial or satellite images to build a map in advance. The current position on the map is determined by matching features from the on-board camera to the global feature map. The problem of feature matching is posed as a standard point pattern matching problem and a solution using the iterative closest point method is given. The proposed algorithm is designed for use in a street vehicle and uses lane markings as features, but can be adapted to almost any other type of feature that is visible in aerial images. Our approach allows for estimating the robot position at a higher precision than by a purely GPS-based localization, while at the same time providing information about the environment far beyond the current field of view.\",\"PeriodicalId\":102206,\"journal\":{\"name\":\"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"84\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2008.4563135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2008.4563135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 84

摘要

本文提出了一种利用全局特征映射支持移动机器人环境感知的新方法。虽然同步定位和测绘(SLAM)的典型方法主要依赖于机载相机进行测绘,但我们的方法使用地理参考的航空或卫星图像来提前构建地图。地图上的当前位置是通过将机载相机的特征与全局特征图相匹配来确定的。将特征匹配问题提出为标准的点模式匹配问题,并利用迭代最近点法给出了求解方法。所提出的算法设计用于街道车辆,并使用车道标记作为特征,但可以适应几乎任何其他类型的航空图像中可见的特征。我们的方法可以比纯粹的基于gps的定位更精确地估计机器人的位置,同时提供远远超出当前视野的环境信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual map matching and localization using a global feature map
This paper presents a novel method to support environmental perception of mobile robots by the use of a global feature map. While typical approaches to simultaneous localization and mapping (SLAM) mainly rely on an on-board camera for mapping, our approach uses geographically referenced aerial or satellite images to build a map in advance. The current position on the map is determined by matching features from the on-board camera to the global feature map. The problem of feature matching is posed as a standard point pattern matching problem and a solution using the iterative closest point method is given. The proposed algorithm is designed for use in a street vehicle and uses lane markings as features, but can be adapted to almost any other type of feature that is visible in aerial images. Our approach allows for estimating the robot position at a higher precision than by a purely GPS-based localization, while at the same time providing information about the environment far beyond the current field of view.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信