{"title":"基于贫困深度指数的时间序列聚类分析在中爪哇省聚类中的应用","authors":"Zulfanita Dien Rizqiana","doi":"10.22487/27765660.2023.v3.i1.16408","DOIUrl":null,"url":null,"abstract":"Poverty is a problem that continues to be faced, especially in developing countries such as Indonesia. Poverty is included in one of the Sustainable Development Goals (SDGs) programs, which is related to hunger and health. The time series data can be clustered based on the characteristics of the time series data and adjusted to the time series pattern. The choice of distance and method used must be adjusted to the dynamic structure of time series data. The purpose of this research is to cluster districts/cities in Central Java Province based on the poverty depth index value from 2017 to 2022. The variable that used in this research is the Poverty Depth Index of 35 districts in Central Java Province from 2017 to 2022. This research used cluster time series with DTW similarity measurment. Based on theDTW and cophenetic coefficient correlation value using three linkage methods, the average linkage method has the highest cophenetic coefficient correlation value of 0.8017988. Testing the quality of clusters using the silhouette coefficient using DTW distance and average linkage method and 2 clusters are included in the good cluster category with a silhouette coefficient value of 0.60. The resulting clusters using the DTW distance and average linkage method are cluster 1 consisting of 25 districts / cities and cluster 2 consisting of 10 districts.","PeriodicalId":337689,"journal":{"name":"Parameter: Journal of Statistics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APPLICATION OF TIME SERIES CLUSTER ANALYSIS IN CLUSTERING THE CENTRAL JAVA PROVINCE BASED ON THE POVERTY DEPTH INDEX\",\"authors\":\"Zulfanita Dien Rizqiana\",\"doi\":\"10.22487/27765660.2023.v3.i1.16408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poverty is a problem that continues to be faced, especially in developing countries such as Indonesia. Poverty is included in one of the Sustainable Development Goals (SDGs) programs, which is related to hunger and health. The time series data can be clustered based on the characteristics of the time series data and adjusted to the time series pattern. The choice of distance and method used must be adjusted to the dynamic structure of time series data. The purpose of this research is to cluster districts/cities in Central Java Province based on the poverty depth index value from 2017 to 2022. The variable that used in this research is the Poverty Depth Index of 35 districts in Central Java Province from 2017 to 2022. This research used cluster time series with DTW similarity measurment. Based on theDTW and cophenetic coefficient correlation value using three linkage methods, the average linkage method has the highest cophenetic coefficient correlation value of 0.8017988. Testing the quality of clusters using the silhouette coefficient using DTW distance and average linkage method and 2 clusters are included in the good cluster category with a silhouette coefficient value of 0.60. The resulting clusters using the DTW distance and average linkage method are cluster 1 consisting of 25 districts / cities and cluster 2 consisting of 10 districts.\",\"PeriodicalId\":337689,\"journal\":{\"name\":\"Parameter: Journal of Statistics\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parameter: Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22487/27765660.2023.v3.i1.16408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parameter: Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22487/27765660.2023.v3.i1.16408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
APPLICATION OF TIME SERIES CLUSTER ANALYSIS IN CLUSTERING THE CENTRAL JAVA PROVINCE BASED ON THE POVERTY DEPTH INDEX
Poverty is a problem that continues to be faced, especially in developing countries such as Indonesia. Poverty is included in one of the Sustainable Development Goals (SDGs) programs, which is related to hunger and health. The time series data can be clustered based on the characteristics of the time series data and adjusted to the time series pattern. The choice of distance and method used must be adjusted to the dynamic structure of time series data. The purpose of this research is to cluster districts/cities in Central Java Province based on the poverty depth index value from 2017 to 2022. The variable that used in this research is the Poverty Depth Index of 35 districts in Central Java Province from 2017 to 2022. This research used cluster time series with DTW similarity measurment. Based on theDTW and cophenetic coefficient correlation value using three linkage methods, the average linkage method has the highest cophenetic coefficient correlation value of 0.8017988. Testing the quality of clusters using the silhouette coefficient using DTW distance and average linkage method and 2 clusters are included in the good cluster category with a silhouette coefficient value of 0.60. The resulting clusters using the DTW distance and average linkage method are cluster 1 consisting of 25 districts / cities and cluster 2 consisting of 10 districts.