G. Parisis, Toby Moncaster, Anil Madhavapeddy, J. Crowcroft
{"title":"Trevi:用很酷的喷泉代码浇灌存储热点","authors":"G. Parisis, Toby Moncaster, Anil Madhavapeddy, J. Crowcroft","doi":"10.1145/2535771.2535781","DOIUrl":null,"url":null,"abstract":"Datacenter networking has brought high-performance storage systems' research to the foreground once again. Many modern storage systems are built with commodity hardware and TCP/IP networking to save costs. In this paper, we highlight a group of problems that are present in such storage systems and which are all related to the use of TCP. As an alternative, we explore Trevi: a fountain coding-based approach for distributing I/O requests that overcomes these problems while still efficiently scheduling resources across both networking and storage layers. We also discuss how receiver-driven flow and congestion control, in combination with fountain coding, can guide the design of Trevi and provide a viable alternative to TCP for datacenter storage.","PeriodicalId":203847,"journal":{"name":"Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Trevi: watering down storage hotspots with cool fountain codes\",\"authors\":\"G. Parisis, Toby Moncaster, Anil Madhavapeddy, J. Crowcroft\",\"doi\":\"10.1145/2535771.2535781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Datacenter networking has brought high-performance storage systems' research to the foreground once again. Many modern storage systems are built with commodity hardware and TCP/IP networking to save costs. In this paper, we highlight a group of problems that are present in such storage systems and which are all related to the use of TCP. As an alternative, we explore Trevi: a fountain coding-based approach for distributing I/O requests that overcomes these problems while still efficiently scheduling resources across both networking and storage layers. We also discuss how receiver-driven flow and congestion control, in combination with fountain coding, can guide the design of Trevi and provide a viable alternative to TCP for datacenter storage.\",\"PeriodicalId\":203847,\"journal\":{\"name\":\"Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2535771.2535781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2535771.2535781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Trevi: watering down storage hotspots with cool fountain codes
Datacenter networking has brought high-performance storage systems' research to the foreground once again. Many modern storage systems are built with commodity hardware and TCP/IP networking to save costs. In this paper, we highlight a group of problems that are present in such storage systems and which are all related to the use of TCP. As an alternative, we explore Trevi: a fountain coding-based approach for distributing I/O requests that overcomes these problems while still efficiently scheduling resources across both networking and storage layers. We also discuss how receiver-driven flow and congestion control, in combination with fountain coding, can guide the design of Trevi and provide a viable alternative to TCP for datacenter storage.