D. Cerra, N. Merkle, C. Henry, K. Alonso, P. d’Angelo, S. Auer, R. Bahmanyar, X. Yuan, K. Bittner, M. Langheinrich, Guichen Zhang, M. Pato, Jiaojiao Tian, P. Reinartz
{"title":"对地观测数据低分辨率标签的逐步细化:第2部分","authors":"D. Cerra, N. Merkle, C. Henry, K. Alonso, P. d’Angelo, S. Auer, R. Bahmanyar, X. Yuan, K. Bittner, M. Langheinrich, Guichen Zhang, M. Pato, Jiaojiao Tian, P. Reinartz","doi":"10.1109/IGARSS39084.2020.9547209","DOIUrl":null,"url":null,"abstract":"This paper describes the contribution of the DLR team ranking 2nd in Track 2 of the 2020 IEEE GRSS Data Fusion Contest. The semantic classification of multimodal earth observation data proposed is based on the refinement of low-resolution MODIS labels, using as auxiliary training data higher resolution labels available for a validation data set. The classification is initialized with a handcrafted decision tree integrating output from a random forest classifier, and subsequently boosted by detectors for specific classes. The results of the team ranking 3rd in Track 1 of the same contest are reported in a companion paper.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stepwise Refinement Of Low Resolution Labels For Earth Observation Data: Part 2\",\"authors\":\"D. Cerra, N. Merkle, C. Henry, K. Alonso, P. d’Angelo, S. Auer, R. Bahmanyar, X. Yuan, K. Bittner, M. Langheinrich, Guichen Zhang, M. Pato, Jiaojiao Tian, P. Reinartz\",\"doi\":\"10.1109/IGARSS39084.2020.9547209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the contribution of the DLR team ranking 2nd in Track 2 of the 2020 IEEE GRSS Data Fusion Contest. The semantic classification of multimodal earth observation data proposed is based on the refinement of low-resolution MODIS labels, using as auxiliary training data higher resolution labels available for a validation data set. The classification is initialized with a handcrafted decision tree integrating output from a random forest classifier, and subsequently boosted by detectors for specific classes. The results of the team ranking 3rd in Track 1 of the same contest are reported in a companion paper.\",\"PeriodicalId\":444267,\"journal\":{\"name\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS39084.2020.9547209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9547209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stepwise Refinement Of Low Resolution Labels For Earth Observation Data: Part 2
This paper describes the contribution of the DLR team ranking 2nd in Track 2 of the 2020 IEEE GRSS Data Fusion Contest. The semantic classification of multimodal earth observation data proposed is based on the refinement of low-resolution MODIS labels, using as auxiliary training data higher resolution labels available for a validation data set. The classification is initialized with a handcrafted decision tree integrating output from a random forest classifier, and subsequently boosted by detectors for specific classes. The results of the team ranking 3rd in Track 1 of the same contest are reported in a companion paper.