对地观测数据低分辨率标签的逐步细化:第2部分

D. Cerra, N. Merkle, C. Henry, K. Alonso, P. d’Angelo, S. Auer, R. Bahmanyar, X. Yuan, K. Bittner, M. Langheinrich, Guichen Zhang, M. Pato, Jiaojiao Tian, P. Reinartz
{"title":"对地观测数据低分辨率标签的逐步细化:第2部分","authors":"D. Cerra, N. Merkle, C. Henry, K. Alonso, P. d’Angelo, S. Auer, R. Bahmanyar, X. Yuan, K. Bittner, M. Langheinrich, Guichen Zhang, M. Pato, Jiaojiao Tian, P. Reinartz","doi":"10.1109/IGARSS39084.2020.9547209","DOIUrl":null,"url":null,"abstract":"This paper describes the contribution of the DLR team ranking 2nd in Track 2 of the 2020 IEEE GRSS Data Fusion Contest. The semantic classification of multimodal earth observation data proposed is based on the refinement of low-resolution MODIS labels, using as auxiliary training data higher resolution labels available for a validation data set. The classification is initialized with a handcrafted decision tree integrating output from a random forest classifier, and subsequently boosted by detectors for specific classes. The results of the team ranking 3rd in Track 1 of the same contest are reported in a companion paper.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stepwise Refinement Of Low Resolution Labels For Earth Observation Data: Part 2\",\"authors\":\"D. Cerra, N. Merkle, C. Henry, K. Alonso, P. d’Angelo, S. Auer, R. Bahmanyar, X. Yuan, K. Bittner, M. Langheinrich, Guichen Zhang, M. Pato, Jiaojiao Tian, P. Reinartz\",\"doi\":\"10.1109/IGARSS39084.2020.9547209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the contribution of the DLR team ranking 2nd in Track 2 of the 2020 IEEE GRSS Data Fusion Contest. The semantic classification of multimodal earth observation data proposed is based on the refinement of low-resolution MODIS labels, using as auxiliary training data higher resolution labels available for a validation data set. The classification is initialized with a handcrafted decision tree integrating output from a random forest classifier, and subsequently boosted by detectors for specific classes. The results of the team ranking 3rd in Track 1 of the same contest are reported in a companion paper.\",\"PeriodicalId\":444267,\"journal\":{\"name\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS39084.2020.9547209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9547209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了在2020年IEEE GRSS数据融合竞赛第二轨道中排名第二的DLR团队的贡献。提出了一种基于低分辨率MODIS标签的多模态地球观测数据语义分类方法,利用验证数据集可用的高分辨率标签作为辅助训练数据。分类是用一个手工制作的决策树进行初始化的,该决策树集成了随机森林分类器的输出,随后由针对特定类的检测器进行增强。在同一场比赛中,在赛道1中排名第3的车队的结果将在相应的论文中报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stepwise Refinement Of Low Resolution Labels For Earth Observation Data: Part 2
This paper describes the contribution of the DLR team ranking 2nd in Track 2 of the 2020 IEEE GRSS Data Fusion Contest. The semantic classification of multimodal earth observation data proposed is based on the refinement of low-resolution MODIS labels, using as auxiliary training data higher resolution labels available for a validation data set. The classification is initialized with a handcrafted decision tree integrating output from a random forest classifier, and subsequently boosted by detectors for specific classes. The results of the team ranking 3rd in Track 1 of the same contest are reported in a companion paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信