一种新的测量误差协方差估计方法

Zhao Yu-hong
{"title":"一种新的测量误差协方差估计方法","authors":"Zhao Yu-hong","doi":"10.1109/ICNNSP.2003.1279355","DOIUrl":null,"url":null,"abstract":"Estimation of the measurement error covariance matrix is an essential requirement in data reconciliation methods. It is common practice to assume that the measurement errors are normal and have a known covariance matrix. A new robust direct algorithm for measurement error covariance estimation is proposed in this paper. Hampel's three-part redescending M-estimators are used to nullifies the effect of large outliers. A direct scheme treating the measured process variables is adopted to make it be used in the cases of nonlinear constraints. Implementation results show that credible results can be achieved either with or without the presence of external causes.","PeriodicalId":336216,"journal":{"name":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new robust direct method for measurement error covariance estimation\",\"authors\":\"Zhao Yu-hong\",\"doi\":\"10.1109/ICNNSP.2003.1279355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of the measurement error covariance matrix is an essential requirement in data reconciliation methods. It is common practice to assume that the measurement errors are normal and have a known covariance matrix. A new robust direct algorithm for measurement error covariance estimation is proposed in this paper. Hampel's three-part redescending M-estimators are used to nullifies the effect of large outliers. A direct scheme treating the measured process variables is adopted to make it be used in the cases of nonlinear constraints. Implementation results show that credible results can be achieved either with or without the presence of external causes.\",\"PeriodicalId\":336216,\"journal\":{\"name\":\"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNNSP.2003.1279355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNSP.2003.1279355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

测量误差协方差矩阵的估计是数据协调方法的基本要求。通常的做法是假设测量误差是正态的,并且有一个已知的协方差矩阵。提出了一种新的测量误差协方差估计的鲁棒直接算法。Hampel的三部分重降m估计用于消除大异常值的影响。采用一种直接处理被测过程变量的格式,使其适用于非线性约束的情况。实施结果表明,无论是否存在外部原因,都可以取得可信的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new robust direct method for measurement error covariance estimation
Estimation of the measurement error covariance matrix is an essential requirement in data reconciliation methods. It is common practice to assume that the measurement errors are normal and have a known covariance matrix. A new robust direct algorithm for measurement error covariance estimation is proposed in this paper. Hampel's three-part redescending M-estimators are used to nullifies the effect of large outliers. A direct scheme treating the measured process variables is adopted to make it be used in the cases of nonlinear constraints. Implementation results show that credible results can be achieved either with or without the presence of external causes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信