智能电网中防止假数据注入的机器学习方法

Mohamed Hamlich, Abdelkarim El Khantach, N. Belbounaguia
{"title":"智能电网中防止假数据注入的机器学习方法","authors":"Mohamed Hamlich, Abdelkarim El Khantach, N. Belbounaguia","doi":"10.1504/ijris.2020.10026679","DOIUrl":null,"url":null,"abstract":"The false data injection in the power grid is a major risk for a good and safety functioning of the smart grid. The false data detection with conventional methods are incapable to detect some false measurements, to remedy this, we have opted to use machine learning which we used five classifiers to conceive an effective detection [k-nearest neighbour (KNN) algorithm, random trees, random forest decision trees, multilayer perceptron and support vector machine]. Our analysis is validated by experiments on a physical bus feeding system performed on PSS/in which we have developed a dataset for real measurement. Afterward we worked with MATLAB software to construct false measurements according to the Jacobean matrix of the state estimation. We tested the collected data with different classification algorithms, which gives good and satisfactory results.","PeriodicalId":360794,"journal":{"name":"Int. J. Reason. based Intell. Syst.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine learning methods against false data injection in smart grid\",\"authors\":\"Mohamed Hamlich, Abdelkarim El Khantach, N. Belbounaguia\",\"doi\":\"10.1504/ijris.2020.10026679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The false data injection in the power grid is a major risk for a good and safety functioning of the smart grid. The false data detection with conventional methods are incapable to detect some false measurements, to remedy this, we have opted to use machine learning which we used five classifiers to conceive an effective detection [k-nearest neighbour (KNN) algorithm, random trees, random forest decision trees, multilayer perceptron and support vector machine]. Our analysis is validated by experiments on a physical bus feeding system performed on PSS/in which we have developed a dataset for real measurement. Afterward we worked with MATLAB software to construct false measurements according to the Jacobean matrix of the state estimation. We tested the collected data with different classification algorithms, which gives good and satisfactory results.\",\"PeriodicalId\":360794,\"journal\":{\"name\":\"Int. J. Reason. based Intell. Syst.\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Reason. based Intell. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijris.2020.10026679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Reason. based Intell. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijris.2020.10026679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

电网中的虚假数据注入是影响智能电网良好、安全运行的主要风险。传统方法的错误数据检测无法检测到一些错误的测量,为了弥补这一点,我们选择使用机器学习,我们使用五个分类器来设计有效的检测[k-近邻(KNN)算法,随机树,随机森林决策树,多层感知器和支持向量机]。我们的分析通过在PSS/上执行的物理总线馈电系统上的实验得到验证,其中我们开发了用于实际测量的数据集。然后利用MATLAB软件根据状态估计的雅可比矩阵构造假测量。我们用不同的分类算法对收集到的数据进行了测试,得到了满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning methods against false data injection in smart grid
The false data injection in the power grid is a major risk for a good and safety functioning of the smart grid. The false data detection with conventional methods are incapable to detect some false measurements, to remedy this, we have opted to use machine learning which we used five classifiers to conceive an effective detection [k-nearest neighbour (KNN) algorithm, random trees, random forest decision trees, multilayer perceptron and support vector machine]. Our analysis is validated by experiments on a physical bus feeding system performed on PSS/in which we have developed a dataset for real measurement. Afterward we worked with MATLAB software to construct false measurements according to the Jacobean matrix of the state estimation. We tested the collected data with different classification algorithms, which gives good and satisfactory results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信