C. Charalambous, C. Kourtellaris, Themistoklis Charalambous
{"title":"基于高斯决策模型的信令高斯过程通用编码方案","authors":"C. Charalambous, C. Kourtellaris, Themistoklis Charalambous","doi":"10.1109/SPAWC.2018.8445982","DOIUrl":null,"url":null,"abstract":"In this paper, we transform the n-finite transmission feedback information (FTFI) capacity of unstable Gaussian decision models with memory on past outputs, subject to an average cost constraint of quadratic form derived in [1], into controllers-encoders-decoders that control the output process, encode a Gaussian process, reconstruct the Gaussian process via a mean-square error (MSE) decoder, and achieve the n-FTFI capacity. For a Gaussian RV message X N(0,σ<sup>2</sup>X) it is shown that the MSE decays according to E X-X'<inf>n</inf> n<sup>2</sup>= -2C<inf>0, n</inf>(k)σ<inf>X</inf><sup>2</sup>, Kɞ(k<inf>min</inf>,∞), where C<inf>0, n</inf>(k) is the n-FTFI capacity, and k<inf>min</inf> is the threshold on the power to ensure convergence.","PeriodicalId":240036,"journal":{"name":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A General Coding Scheme for Signaling Gaussian Processes Over Gaussian Decision Models\",\"authors\":\"C. Charalambous, C. Kourtellaris, Themistoklis Charalambous\",\"doi\":\"10.1109/SPAWC.2018.8445982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we transform the n-finite transmission feedback information (FTFI) capacity of unstable Gaussian decision models with memory on past outputs, subject to an average cost constraint of quadratic form derived in [1], into controllers-encoders-decoders that control the output process, encode a Gaussian process, reconstruct the Gaussian process via a mean-square error (MSE) decoder, and achieve the n-FTFI capacity. For a Gaussian RV message X N(0,σ<sup>2</sup>X) it is shown that the MSE decays according to E X-X'<inf>n</inf> n<sup>2</sup>= -2C<inf>0, n</inf>(k)σ<inf>X</inf><sup>2</sup>, Kɞ(k<inf>min</inf>,∞), where C<inf>0, n</inf>(k) is the n-FTFI capacity, and k<inf>min</inf> is the threshold on the power to ensure convergence.\",\"PeriodicalId\":240036,\"journal\":{\"name\":\"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2018.8445982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2018.8445982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
本文将不稳定高斯决策模型的n-有限传输反馈信息(FTFI)容量转化为控制器-编码器-解码器,控制输出过程,编码高斯过程,通过均方误差(MSE)解码器重构高斯过程,从而实现n-FTFI容量。对于高斯RV消息X N(0,σ2X), MSE的衰减符合E X-X'n N = -2C0, N(k)σX2, k (kmin,∞),其中,C0, N(k)为N - ftfi容量,kmin为保证收敛的功率阈值。
A General Coding Scheme for Signaling Gaussian Processes Over Gaussian Decision Models
In this paper, we transform the n-finite transmission feedback information (FTFI) capacity of unstable Gaussian decision models with memory on past outputs, subject to an average cost constraint of quadratic form derived in [1], into controllers-encoders-decoders that control the output process, encode a Gaussian process, reconstruct the Gaussian process via a mean-square error (MSE) decoder, and achieve the n-FTFI capacity. For a Gaussian RV message X N(0,σ2X) it is shown that the MSE decays according to E X-X'n n2= -2C0, n(k)σX2, Kɞ(kmin,∞), where C0, n(k) is the n-FTFI capacity, and kmin is the threshold on the power to ensure convergence.