机会主义网络中接触机会的自相似性和可预测性

Thabotharan Kathiravelu, N. Ranasinghe
{"title":"机会主义网络中接触机会的自相似性和可预测性","authors":"Thabotharan Kathiravelu, N. Ranasinghe","doi":"10.1109/ICON.2012.6506601","DOIUrl":null,"url":null,"abstract":"Predicting future contact opportunities in opportunistic networks can assist mobile nodes to make intelligent decisions on efficient content forwarding and can greatly improve the message delivery ratio. But predicting future contacts has to depend on the past history of contacts and then naturally a question arises on how valid is the use of past history of contacts for the estimation of future contacts. Recent research studies in complex network analysis have proved that the real complex networks such as opportunistic networks do exhibit self repeating patterns on all length scales. We use statistical estimators to show that the opportunistic network connectivity traces possess the self similarity property and therefore are capable of predicting future contact opportunities using the past history. We incorporate this concept to develop an adaptive, reactive routing protocol for opportunistic networks which can predict the future contact opportunities with certain levels of confidence and we show that the adaptive routing protocol outperforms existing routing algorithms.","PeriodicalId":234594,"journal":{"name":"2012 18th IEEE International Conference on Networks (ICON)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self similarity and predictability of contact opportunities in opportunistic networks\",\"authors\":\"Thabotharan Kathiravelu, N. Ranasinghe\",\"doi\":\"10.1109/ICON.2012.6506601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting future contact opportunities in opportunistic networks can assist mobile nodes to make intelligent decisions on efficient content forwarding and can greatly improve the message delivery ratio. But predicting future contacts has to depend on the past history of contacts and then naturally a question arises on how valid is the use of past history of contacts for the estimation of future contacts. Recent research studies in complex network analysis have proved that the real complex networks such as opportunistic networks do exhibit self repeating patterns on all length scales. We use statistical estimators to show that the opportunistic network connectivity traces possess the self similarity property and therefore are capable of predicting future contact opportunities using the past history. We incorporate this concept to develop an adaptive, reactive routing protocol for opportunistic networks which can predict the future contact opportunities with certain levels of confidence and we show that the adaptive routing protocol outperforms existing routing algorithms.\",\"PeriodicalId\":234594,\"journal\":{\"name\":\"2012 18th IEEE International Conference on Networks (ICON)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 18th IEEE International Conference on Networks (ICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICON.2012.6506601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 18th IEEE International Conference on Networks (ICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICON.2012.6506601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在机会网络中预测未来的接触机会,可以帮助移动节点做出有效内容转发的智能决策,大大提高消息传递率。但是预测未来的接触必须依赖于过去的接触史,然后自然会出现一个问题,即使用过去的接触史来估计未来接触的有效性如何。近年来在复杂网络分析方面的研究证明,机会网络等真实的复杂网络在所有长度尺度上都表现出自我重复的模式。我们使用统计估计表明机会网络连接轨迹具有自相似性,因此能够利用过去的历史预测未来的接触机会。我们将这一概念结合起来,为机会网络开发了一种自适应的、被动的路由协议,该协议可以以一定的置信度预测未来的接触机会,并且我们表明自适应路由协议优于现有的路由算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self similarity and predictability of contact opportunities in opportunistic networks
Predicting future contact opportunities in opportunistic networks can assist mobile nodes to make intelligent decisions on efficient content forwarding and can greatly improve the message delivery ratio. But predicting future contacts has to depend on the past history of contacts and then naturally a question arises on how valid is the use of past history of contacts for the estimation of future contacts. Recent research studies in complex network analysis have proved that the real complex networks such as opportunistic networks do exhibit self repeating patterns on all length scales. We use statistical estimators to show that the opportunistic network connectivity traces possess the self similarity property and therefore are capable of predicting future contact opportunities using the past history. We incorporate this concept to develop an adaptive, reactive routing protocol for opportunistic networks which can predict the future contact opportunities with certain levels of confidence and we show that the adaptive routing protocol outperforms existing routing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信