Rodrigo Teles Hermeto, A. Gallais, Fabrice Théoleyre
{"title":"室内环境下6TiSCH网络的(过)反应及稳定性研究","authors":"Rodrigo Teles Hermeto, A. Gallais, Fabrice Théoleyre","doi":"10.1145/3242102.3242104","DOIUrl":null,"url":null,"abstract":"Industrial networks differ from others kinds of networks because they require real-time performance in order to meet strict requirements. With the rise of low-power wireless standards, the industrial applications have started to use wireless communications in order to reduce deployment and management costs. IEEE802.15.4-TSCH represents currently a promising standard relying on a strict schedule of the transmissions to provide strong guarantees. However, the radio environment still exhibits time-variable characteristics. Thus, the network has to provision sufficient resource (bandwidth) to cope with the worst case while still achieving high energy efficiency. The 6TiSCH IETF working group defines a stack to tune dynamically the TSCH schedule. In this paper, we analyze in depth the stability and the convergence of a 6TiSCH network in an indoor testbed. We identify the main causes of instabilities, and we propose solutions to address each of them. We show that our solutions improve significantly the stability.","PeriodicalId":241359,"journal":{"name":"Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On the (over)-Reactions and the Stability of a 6TiSCH Network in an Indoor Environment\",\"authors\":\"Rodrigo Teles Hermeto, A. Gallais, Fabrice Théoleyre\",\"doi\":\"10.1145/3242102.3242104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial networks differ from others kinds of networks because they require real-time performance in order to meet strict requirements. With the rise of low-power wireless standards, the industrial applications have started to use wireless communications in order to reduce deployment and management costs. IEEE802.15.4-TSCH represents currently a promising standard relying on a strict schedule of the transmissions to provide strong guarantees. However, the radio environment still exhibits time-variable characteristics. Thus, the network has to provision sufficient resource (bandwidth) to cope with the worst case while still achieving high energy efficiency. The 6TiSCH IETF working group defines a stack to tune dynamically the TSCH schedule. In this paper, we analyze in depth the stability and the convergence of a 6TiSCH network in an indoor testbed. We identify the main causes of instabilities, and we propose solutions to address each of them. We show that our solutions improve significantly the stability.\",\"PeriodicalId\":241359,\"journal\":{\"name\":\"Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3242102.3242104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3242102.3242104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the (over)-Reactions and the Stability of a 6TiSCH Network in an Indoor Environment
Industrial networks differ from others kinds of networks because they require real-time performance in order to meet strict requirements. With the rise of low-power wireless standards, the industrial applications have started to use wireless communications in order to reduce deployment and management costs. IEEE802.15.4-TSCH represents currently a promising standard relying on a strict schedule of the transmissions to provide strong guarantees. However, the radio environment still exhibits time-variable characteristics. Thus, the network has to provision sufficient resource (bandwidth) to cope with the worst case while still achieving high energy efficiency. The 6TiSCH IETF working group defines a stack to tune dynamically the TSCH schedule. In this paper, we analyze in depth the stability and the convergence of a 6TiSCH network in an indoor testbed. We identify the main causes of instabilities, and we propose solutions to address each of them. We show that our solutions improve significantly the stability.