SiC衬底AlGaN/GaN hemt的高频性能研究

E. Mohapatra, S. Das, Tara Prasanna Dash, S. Dey, J. Jena, C. K. Maiti
{"title":"SiC衬底AlGaN/GaN hemt的高频性能研究","authors":"E. Mohapatra, S. Das, Tara Prasanna Dash, S. Dey, J. Jena, C. K. Maiti","doi":"10.1109/DEVIC.2019.8783562","DOIUrl":null,"url":null,"abstract":"Power transistors based on gallium nitride (GaN) enable power electronic switches to operate at much higher switching frequencies compared to those based on silicon (Si). In this work, using TCAD simulations, we show that GaN-based high electron mobility transistors (HEMTs) can be optimized to have effectively reduced undesirable parasitic capacitances to greatly improve both the high transconductance and current gain cutoff frequency simultaneously. We report a new generation of high performance AlGaN/GaN HEMTs grown on high resistivity SiC substrates. We map out to evaluate small signal and large signal device performances against technological parameters such as the gate length, field plate length and the source-drain contact separation. The device with a gate length of $\\mathbf{0.25}\\mu\\mathbf{m}$ and field plate length of $\\mathbf{0.3}\\mu\\mathbf{m}$ exhibits a maximum dc drain current density of 3.66 A/mm at $\\mathbf{V}_{\\mathbf{GS}}=3\\mathbf{V}$ with an extrinsic transconductance of 233.6 mS/mm and an extrinsic current gain cut-off frequency $(\\mathbf{f}_{\\mathbf{t}})$ of 78.9 GHz.","PeriodicalId":294095,"journal":{"name":"2019 Devices for Integrated Circuit (DevIC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Frequency Performance of AlGaN/GaN HEMTs Fabricated on SiC Substrates\",\"authors\":\"E. Mohapatra, S. Das, Tara Prasanna Dash, S. Dey, J. Jena, C. K. Maiti\",\"doi\":\"10.1109/DEVIC.2019.8783562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power transistors based on gallium nitride (GaN) enable power electronic switches to operate at much higher switching frequencies compared to those based on silicon (Si). In this work, using TCAD simulations, we show that GaN-based high electron mobility transistors (HEMTs) can be optimized to have effectively reduced undesirable parasitic capacitances to greatly improve both the high transconductance and current gain cutoff frequency simultaneously. We report a new generation of high performance AlGaN/GaN HEMTs grown on high resistivity SiC substrates. We map out to evaluate small signal and large signal device performances against technological parameters such as the gate length, field plate length and the source-drain contact separation. The device with a gate length of $\\\\mathbf{0.25}\\\\mu\\\\mathbf{m}$ and field plate length of $\\\\mathbf{0.3}\\\\mu\\\\mathbf{m}$ exhibits a maximum dc drain current density of 3.66 A/mm at $\\\\mathbf{V}_{\\\\mathbf{GS}}=3\\\\mathbf{V}$ with an extrinsic transconductance of 233.6 mS/mm and an extrinsic current gain cut-off frequency $(\\\\mathbf{f}_{\\\\mathbf{t}})$ of 78.9 GHz.\",\"PeriodicalId\":294095,\"journal\":{\"name\":\"2019 Devices for Integrated Circuit (DevIC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Devices for Integrated Circuit (DevIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEVIC.2019.8783562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Devices for Integrated Circuit (DevIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVIC.2019.8783562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与基于硅(Si)的功率晶体管相比,基于氮化镓(GaN)的功率晶体管使电力电子开关能够以更高的开关频率工作。在这项工作中,使用TCAD模拟,我们表明基于氮化镓的高电子迁移率晶体管(hemt)可以优化,有效地减少不必要的寄生电容,从而同时大大提高高跨导和电流增益截止频率。我们报道了在高电阻SiC衬底上生长的新一代高性能AlGaN/GaN hemt。我们打算根据栅极长度、场极板长度和源漏接触距离等技术参数来评估小信号和大信号器件的性能。该器件栅极长度为$\mathbf{0.25}\mu\mathbf{m}$,场极板长度为$\mathbf{0.3}\mu\mathbf{m}$,在$\mathbf{V}_{\mathbf{GS}}=3\mathbf{V}$时,最大直流漏极电流密度为3.66 a /mm,外在跨导为233.6 mS/mm,外在电流增益截止频率$(\mathbf{f}_{\mathbf{t}})$为78.9 GHz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Frequency Performance of AlGaN/GaN HEMTs Fabricated on SiC Substrates
Power transistors based on gallium nitride (GaN) enable power electronic switches to operate at much higher switching frequencies compared to those based on silicon (Si). In this work, using TCAD simulations, we show that GaN-based high electron mobility transistors (HEMTs) can be optimized to have effectively reduced undesirable parasitic capacitances to greatly improve both the high transconductance and current gain cutoff frequency simultaneously. We report a new generation of high performance AlGaN/GaN HEMTs grown on high resistivity SiC substrates. We map out to evaluate small signal and large signal device performances against technological parameters such as the gate length, field plate length and the source-drain contact separation. The device with a gate length of $\mathbf{0.25}\mu\mathbf{m}$ and field plate length of $\mathbf{0.3}\mu\mathbf{m}$ exhibits a maximum dc drain current density of 3.66 A/mm at $\mathbf{V}_{\mathbf{GS}}=3\mathbf{V}$ with an extrinsic transconductance of 233.6 mS/mm and an extrinsic current gain cut-off frequency $(\mathbf{f}_{\mathbf{t}})$ of 78.9 GHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信