具有6路的完全二部多重图的包盖

Ars Comb. Pub Date : 2008-12-01 DOI:10.29850/LTJ.200812.0011
Hung-Chih Lee
{"title":"具有6路的完全二部多重图的包盖","authors":"Hung-Chih Lee","doi":"10.29850/LTJ.200812.0011","DOIUrl":null,"url":null,"abstract":"Let C(subscript k) denote a circuit of length k. In a multidigraph G, a C(subscript k)-packing is a set P={G1, G2,…, G(subscript s)} of arc-disjoint subdigraphs of G such that each G(subscript i) is isomorphic to C(subscript k), and a C(subscript k)-packing is maximum if it has the maximum number of members among all packings; a C(subscript k)-covering is a set R={G1, G2,…, G(subscript t)} of subdigraphs of G such that each G(subscript i) is isomorphic to C(subscript k) and every arc of G appears in at least one member of R, and a C(subscript k) covering is minimum if it has the minimum number of members among all coverings. In this paper the problem for finding a maximum C4-packing and a minimum C4-covering of the complete bipartite multidigraph is solved.","PeriodicalId":378960,"journal":{"name":"Ars Comb.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Packing and Covering Complete Bipartite Multidigraphs with 6-circuits\",\"authors\":\"Hung-Chih Lee\",\"doi\":\"10.29850/LTJ.200812.0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let C(subscript k) denote a circuit of length k. In a multidigraph G, a C(subscript k)-packing is a set P={G1, G2,…, G(subscript s)} of arc-disjoint subdigraphs of G such that each G(subscript i) is isomorphic to C(subscript k), and a C(subscript k)-packing is maximum if it has the maximum number of members among all packings; a C(subscript k)-covering is a set R={G1, G2,…, G(subscript t)} of subdigraphs of G such that each G(subscript i) is isomorphic to C(subscript k) and every arc of G appears in at least one member of R, and a C(subscript k) covering is minimum if it has the minimum number of members among all coverings. In this paper the problem for finding a maximum C4-packing and a minimum C4-covering of the complete bipartite multidigraph is solved.\",\"PeriodicalId\":378960,\"journal\":{\"name\":\"Ars Comb.\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Comb.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29850/LTJ.200812.0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Comb.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29850/LTJ.200812.0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设C(下标k)表示长度为k的回路,在多向图G中,C(下标k)填充是G的弧不相交子图的集合P={G1, G2,…,G(下标s)},使得每个G(下标i)同构于C(下标k),当C(下标k)填充在所有填充中具有最大的成员数时,它是最大的;C(下标k)覆盖是G的子图的集合R={G1, G2,…,G(下标t)},使得每个G(下标i)同态于C(下标k)并且G的每个弧至少出现在R的一个元素中,如果C(下标k)覆盖在所有覆盖中具有最小的成员数,则C(下标k)覆盖是最小的。本文解决了完全二部多重图的最大c4 -填充和最小c4 -覆盖问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Packing and Covering Complete Bipartite Multidigraphs with 6-circuits
Let C(subscript k) denote a circuit of length k. In a multidigraph G, a C(subscript k)-packing is a set P={G1, G2,…, G(subscript s)} of arc-disjoint subdigraphs of G such that each G(subscript i) is isomorphic to C(subscript k), and a C(subscript k)-packing is maximum if it has the maximum number of members among all packings; a C(subscript k)-covering is a set R={G1, G2,…, G(subscript t)} of subdigraphs of G such that each G(subscript i) is isomorphic to C(subscript k) and every arc of G appears in at least one member of R, and a C(subscript k) covering is minimum if it has the minimum number of members among all coverings. In this paper the problem for finding a maximum C4-packing and a minimum C4-covering of the complete bipartite multidigraph is solved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信