电压过标度下优美退化的松弛再分配

A. Kahng, Seokhyeong Kang, Rakesh Kumar, J. Sartori
{"title":"电压过标度下优美退化的松弛再分配","authors":"A. Kahng, Seokhyeong Kang, Rakesh Kumar, J. Sartori","doi":"10.1109/ASPDAC.2010.5419690","DOIUrl":null,"url":null,"abstract":"Modern digital IC designs have a critical operating point, or “wall of slack”, that limits voltage scaling. Even with an error-tolerance mechanism, scaling voltage below a critical voltage - so-called overscaling - results in more timing errors than can be effectively detected or corrected. This limits the effectiveness of voltage scaling in trading off system reliability and power. We propose a design-level approach to trading off reliability and voltage (power) in, e.g., microprocessor designs. We increase the range of voltage values at which the (timing) error rate is acceptable; we achieve this through techniques for power-aware slack redistribution that shift the timing slack of frequently-exercised, near-critical timing paths in a power- and area-efficient manner. The resulting designs heuristically minimize the voltage at which the maximum allowable error rate is encountered, thus minimizing power consumption for a prescribed maximum error rate and allowing the design to fail more gracefully. Compared with baseline designs, we achieve a maximum of 32.8% and an average of 12.5% power reduction at an error rate of 2%. The area overhead of our techniques, as evaluated through physical implementation (synthesis, placement and routing), is no more than 2.7%.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"166","resultStr":"{\"title\":\"Slack redistribution for graceful degradation under voltage overscaling\",\"authors\":\"A. Kahng, Seokhyeong Kang, Rakesh Kumar, J. Sartori\",\"doi\":\"10.1109/ASPDAC.2010.5419690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern digital IC designs have a critical operating point, or “wall of slack”, that limits voltage scaling. Even with an error-tolerance mechanism, scaling voltage below a critical voltage - so-called overscaling - results in more timing errors than can be effectively detected or corrected. This limits the effectiveness of voltage scaling in trading off system reliability and power. We propose a design-level approach to trading off reliability and voltage (power) in, e.g., microprocessor designs. We increase the range of voltage values at which the (timing) error rate is acceptable; we achieve this through techniques for power-aware slack redistribution that shift the timing slack of frequently-exercised, near-critical timing paths in a power- and area-efficient manner. The resulting designs heuristically minimize the voltage at which the maximum allowable error rate is encountered, thus minimizing power consumption for a prescribed maximum error rate and allowing the design to fail more gracefully. Compared with baseline designs, we achieve a maximum of 32.8% and an average of 12.5% power reduction at an error rate of 2%. The area overhead of our techniques, as evaluated through physical implementation (synthesis, placement and routing), is no more than 2.7%.\",\"PeriodicalId\":152569,\"journal\":{\"name\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"166\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2010.5419690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2010.5419690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 166

摘要

现代数字集成电路设计有一个关键的工作点,或“松弛墙”,限制电压缩放。即使有容错机制,低于临界电压的缩放电压(所谓的过缩放)也会导致比有效检测或纠正更多的定时误差。这限制了电压缩放在权衡系统可靠性和功率方面的有效性。我们提出了一种设计级的方法来权衡可靠性和电压(功率),例如,微处理器设计。我们增加了(定时)错误率可接受的电压值范围;我们通过功率感知松弛再分配技术来实现这一目标,该技术以功率和面积效率的方式改变频繁运行的近关键时序路径的定时松弛。由此产生的设计启发式地最小化遇到最大允许错误率时的电压,从而在规定的最大错误率下最小化功耗,并允许设计更优雅地失败。与基准设计相比,我们实现了最大32.8%和平均12.5%的功耗降低,错误率为2%。通过物理实现(合成、放置和路由)评估,我们的技术的面积开销不超过2.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Slack redistribution for graceful degradation under voltage overscaling
Modern digital IC designs have a critical operating point, or “wall of slack”, that limits voltage scaling. Even with an error-tolerance mechanism, scaling voltage below a critical voltage - so-called overscaling - results in more timing errors than can be effectively detected or corrected. This limits the effectiveness of voltage scaling in trading off system reliability and power. We propose a design-level approach to trading off reliability and voltage (power) in, e.g., microprocessor designs. We increase the range of voltage values at which the (timing) error rate is acceptable; we achieve this through techniques for power-aware slack redistribution that shift the timing slack of frequently-exercised, near-critical timing paths in a power- and area-efficient manner. The resulting designs heuristically minimize the voltage at which the maximum allowable error rate is encountered, thus minimizing power consumption for a prescribed maximum error rate and allowing the design to fail more gracefully. Compared with baseline designs, we achieve a maximum of 32.8% and an average of 12.5% power reduction at an error rate of 2%. The area overhead of our techniques, as evaluated through physical implementation (synthesis, placement and routing), is no more than 2.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信