多目标粒子滤波中的混合标记问题

Y. Boers, H. Driessen
{"title":"多目标粒子滤波中的混合标记问题","authors":"Y. Boers, H. Driessen","doi":"10.1109/ICIF.2007.4408005","DOIUrl":null,"url":null,"abstract":"In this paper the so called mixed labeling problem inherent, or at least thought to be inherent to a joint state multi target particle filter implementation is treated. The mixed labeling problem would be prohibitive for track extraction from a joint state multi target particle filter. It is shown and proven using the theory of Markov chains, that the mixed labeling problem is inherently self-resolving in a particle filter. It is also shown that the factors influencing this capability are the number of particles and the number of resampling steps.","PeriodicalId":298941,"journal":{"name":"2007 10th International Conference on Information Fusion","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"The mixed labeling problem in multi target particle filtering\",\"authors\":\"Y. Boers, H. Driessen\",\"doi\":\"10.1109/ICIF.2007.4408005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the so called mixed labeling problem inherent, or at least thought to be inherent to a joint state multi target particle filter implementation is treated. The mixed labeling problem would be prohibitive for track extraction from a joint state multi target particle filter. It is shown and proven using the theory of Markov chains, that the mixed labeling problem is inherently self-resolving in a particle filter. It is also shown that the factors influencing this capability are the number of particles and the number of resampling steps.\",\"PeriodicalId\":298941,\"journal\":{\"name\":\"2007 10th International Conference on Information Fusion\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 10th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2007.4408005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2007.4408005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

本文研究了所谓的混合标记问题,或至少被认为是联合状态多目标粒子滤波实现所固有的混合标记问题。混合标记问题不利于联合状态多目标粒子滤波器的轨迹提取。利用马尔可夫链理论证明了粒子滤波器中混合标记问题具有自解性。研究还表明,影响这种能力的因素是粒子数和重采样步数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The mixed labeling problem in multi target particle filtering
In this paper the so called mixed labeling problem inherent, or at least thought to be inherent to a joint state multi target particle filter implementation is treated. The mixed labeling problem would be prohibitive for track extraction from a joint state multi target particle filter. It is shown and proven using the theory of Markov chains, that the mixed labeling problem is inherently self-resolving in a particle filter. It is also shown that the factors influencing this capability are the number of particles and the number of resampling steps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信