Muskan Garg, Chandni Saxena, Debabrata Samanta, B. Dorr
{"title":"lonexplain: Reddit帖子中的孤独感是精神障碍的结果","authors":"Muskan Garg, Chandni Saxena, Debabrata Samanta, B. Dorr","doi":"10.48550/arXiv.2305.18736","DOIUrl":null,"url":null,"abstract":"Social media is a potential source of information that infers latent mental states through Natural Language Processing (NLP). While narrating real-life experiences, social media users convey their feeling of loneliness or isolated lifestyle, impacting their mental well-being. Existing literature on psychological theories points to loneliness as the major consequence of interpersonal risk factors, propounding the need to investigate loneliness as a major aspect of mental disturbance. We formulate lonesomeness detection in social media posts as an explainable binary classification problem, discovering the users at-risk, suggesting the need of resilience for early control. To the best of our knowledge, there is no existing explainable dataset, i.e., one with human-readable, annotated text spans, to facilitate further research and development in loneliness detection causing mental disturbance. In this work, three experts: a senior clinical psychologist, a rehabilitation counselor, and a social NLP researcher define annotation schemes and perplexity guidelines to mark the presence or absence of lonesomeness, along with the marking of text-spans in original posts as explanation, in 3,521 Reddit posts. We expect the public release of our dataset, LonXplain, and traditional classifiers as baselines via GitHub.","PeriodicalId":136374,"journal":{"name":"International Conference on Applications of Natural Language to Data Bases","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LonXplain: Lonesomeness as a Consequence of Mental Disturbance in Reddit Posts\",\"authors\":\"Muskan Garg, Chandni Saxena, Debabrata Samanta, B. Dorr\",\"doi\":\"10.48550/arXiv.2305.18736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social media is a potential source of information that infers latent mental states through Natural Language Processing (NLP). While narrating real-life experiences, social media users convey their feeling of loneliness or isolated lifestyle, impacting their mental well-being. Existing literature on psychological theories points to loneliness as the major consequence of interpersonal risk factors, propounding the need to investigate loneliness as a major aspect of mental disturbance. We formulate lonesomeness detection in social media posts as an explainable binary classification problem, discovering the users at-risk, suggesting the need of resilience for early control. To the best of our knowledge, there is no existing explainable dataset, i.e., one with human-readable, annotated text spans, to facilitate further research and development in loneliness detection causing mental disturbance. In this work, three experts: a senior clinical psychologist, a rehabilitation counselor, and a social NLP researcher define annotation schemes and perplexity guidelines to mark the presence or absence of lonesomeness, along with the marking of text-spans in original posts as explanation, in 3,521 Reddit posts. We expect the public release of our dataset, LonXplain, and traditional classifiers as baselines via GitHub.\",\"PeriodicalId\":136374,\"journal\":{\"name\":\"International Conference on Applications of Natural Language to Data Bases\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Applications of Natural Language to Data Bases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2305.18736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Applications of Natural Language to Data Bases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.18736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LonXplain: Lonesomeness as a Consequence of Mental Disturbance in Reddit Posts
Social media is a potential source of information that infers latent mental states through Natural Language Processing (NLP). While narrating real-life experiences, social media users convey their feeling of loneliness or isolated lifestyle, impacting their mental well-being. Existing literature on psychological theories points to loneliness as the major consequence of interpersonal risk factors, propounding the need to investigate loneliness as a major aspect of mental disturbance. We formulate lonesomeness detection in social media posts as an explainable binary classification problem, discovering the users at-risk, suggesting the need of resilience for early control. To the best of our knowledge, there is no existing explainable dataset, i.e., one with human-readable, annotated text spans, to facilitate further research and development in loneliness detection causing mental disturbance. In this work, three experts: a senior clinical psychologist, a rehabilitation counselor, and a social NLP researcher define annotation schemes and perplexity guidelines to mark the presence or absence of lonesomeness, along with the marking of text-spans in original posts as explanation, in 3,521 Reddit posts. We expect the public release of our dataset, LonXplain, and traditional classifiers as baselines via GitHub.