基于机器学习的路径预测系统-适用于所有路口的一个模型

Kai-Qi Huang, Min-Te Sun
{"title":"基于机器学习的路径预测系统-适用于所有路口的一个模型","authors":"Kai-Qi Huang, Min-Te Sun","doi":"10.1109/TAAI.2018.00023","DOIUrl":null,"url":null,"abstract":"To reduce the number of accidents, this thesis proposes a vehicle path prediction system to predict the future direction when a vehicle is about to cross an intersection. The GPS sensor is used to collect the dataset of vehicle trajectories at intersections. The trend of vehicle movements are derived from the heading in the trajectories, which is then combined with the vehicle speed to generate training data. In our path prediction algorithm, two ensemble learning algorithms, i.e., Random Forests and AdaBoost, are adopted for model training. The experiment results indicate that the Random Forest algorithm exhibits the best performance, and the Adaboost algorithm performs better than the base learner (i.e., Decision Tree).","PeriodicalId":211734,"journal":{"name":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Machine Learning Based Path Prediction System - Adapting One Model for All Intersections\",\"authors\":\"Kai-Qi Huang, Min-Te Sun\",\"doi\":\"10.1109/TAAI.2018.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To reduce the number of accidents, this thesis proposes a vehicle path prediction system to predict the future direction when a vehicle is about to cross an intersection. The GPS sensor is used to collect the dataset of vehicle trajectories at intersections. The trend of vehicle movements are derived from the heading in the trajectories, which is then combined with the vehicle speed to generate training data. In our path prediction algorithm, two ensemble learning algorithms, i.e., Random Forests and AdaBoost, are adopted for model training. The experiment results indicate that the Random Forest algorithm exhibits the best performance, and the Adaboost algorithm performs better than the base learner (i.e., Decision Tree).\",\"PeriodicalId\":211734,\"journal\":{\"name\":\"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAAI.2018.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI.2018.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了减少事故的发生,本文提出了一种车辆路径预测系统,用于预测车辆即将通过十字路口时的未来方向。GPS传感器用于收集十字路口车辆轨迹数据集。从轨迹中的航向得到车辆的运动趋势,然后将其与车速相结合生成训练数据。在我们的路径预测算法中,采用随机森林和AdaBoost两种集成学习算法进行模型训练。实验结果表明,随机森林算法表现出最好的性能,Adaboost算法表现优于基础学习器(即决策树)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Based Path Prediction System - Adapting One Model for All Intersections
To reduce the number of accidents, this thesis proposes a vehicle path prediction system to predict the future direction when a vehicle is about to cross an intersection. The GPS sensor is used to collect the dataset of vehicle trajectories at intersections. The trend of vehicle movements are derived from the heading in the trajectories, which is then combined with the vehicle speed to generate training data. In our path prediction algorithm, two ensemble learning algorithms, i.e., Random Forests and AdaBoost, are adopted for model training. The experiment results indicate that the Random Forest algorithm exhibits the best performance, and the Adaboost algorithm performs better than the base learner (i.e., Decision Tree).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信