Kohei Shiraga, Yasushi Makihara, D. Muramatsu, T. Echigo, Y. Yagi
{"title":"基于卷积神经网络的视点不变步态识别","authors":"Kohei Shiraga, Yasushi Makihara, D. Muramatsu, T. Echigo, Y. Yagi","doi":"10.1109/ICB.2016.7550060","DOIUrl":null,"url":null,"abstract":"This paper proposes a method of gait recognition using a convolutional neural network (CNN). Inspired by the great successes of CNNs in image recognition tasks, we feed in the most prevalent image-based gait representation, that is, the gait energy image (GEI), as an input to a CNN designed for gait recognition called GEINet. More specifically, GEINet is composed of two sequential triplets of convolution, pooling, and normalization layers, and two subsequent fully connected layers, which output a set of similarities to individual training subjects. We conducted experiments to demonstrate the effectiveness of the proposed method in terms of cross-view gait recognition in both cooperative and uncooperative settings using the OU-ISIR large population dataset. As a result, we confirmed that the proposed method significantly outperformed state-of-the-art approaches, in particular in verification scenarios.","PeriodicalId":308715,"journal":{"name":"2016 International Conference on Biometrics (ICB)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"301","resultStr":"{\"title\":\"GEINet: View-invariant gait recognition using a convolutional neural network\",\"authors\":\"Kohei Shiraga, Yasushi Makihara, D. Muramatsu, T. Echigo, Y. Yagi\",\"doi\":\"10.1109/ICB.2016.7550060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method of gait recognition using a convolutional neural network (CNN). Inspired by the great successes of CNNs in image recognition tasks, we feed in the most prevalent image-based gait representation, that is, the gait energy image (GEI), as an input to a CNN designed for gait recognition called GEINet. More specifically, GEINet is composed of two sequential triplets of convolution, pooling, and normalization layers, and two subsequent fully connected layers, which output a set of similarities to individual training subjects. We conducted experiments to demonstrate the effectiveness of the proposed method in terms of cross-view gait recognition in both cooperative and uncooperative settings using the OU-ISIR large population dataset. As a result, we confirmed that the proposed method significantly outperformed state-of-the-art approaches, in particular in verification scenarios.\",\"PeriodicalId\":308715,\"journal\":{\"name\":\"2016 International Conference on Biometrics (ICB)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"301\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB.2016.7550060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2016.7550060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GEINet: View-invariant gait recognition using a convolutional neural network
This paper proposes a method of gait recognition using a convolutional neural network (CNN). Inspired by the great successes of CNNs in image recognition tasks, we feed in the most prevalent image-based gait representation, that is, the gait energy image (GEI), as an input to a CNN designed for gait recognition called GEINet. More specifically, GEINet is composed of two sequential triplets of convolution, pooling, and normalization layers, and two subsequent fully connected layers, which output a set of similarities to individual training subjects. We conducted experiments to demonstrate the effectiveness of the proposed method in terms of cross-view gait recognition in both cooperative and uncooperative settings using the OU-ISIR large population dataset. As a result, we confirmed that the proposed method significantly outperformed state-of-the-art approaches, in particular in verification scenarios.