用于卷积神经网络的硅光子JTC的设计、封装和测试

N. Peserico, Hangbo Yang, Xiaoxuan Ma, Shurui Li, M. Hosseini, J. George, Puneet Gupta, C. Wong, V. Sorger
{"title":"用于卷积神经网络的硅光子JTC的设计、封装和测试","authors":"N. Peserico, Hangbo Yang, Xiaoxuan Ma, Shurui Li, M. Hosseini, J. George, Puneet Gupta, C. Wong, V. Sorger","doi":"10.1109/SiPhotonics55903.2023.10141918","DOIUrl":null,"url":null,"abstract":"Convolution Neural Networks are one of the most powerful types of Neural Networks. However, the 2D convolution task is computationally heavy. Here, we present an integrated Silicon Photonic chip that can perform the Joint Transfer Convolution, using the properties of light propagation.","PeriodicalId":105710,"journal":{"name":"2023 IEEE Silicon Photonics Conference (SiPhotonics)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Packaging, and Testing of Silicon Photonics JTC for Convolution Neural Network\",\"authors\":\"N. Peserico, Hangbo Yang, Xiaoxuan Ma, Shurui Li, M. Hosseini, J. George, Puneet Gupta, C. Wong, V. Sorger\",\"doi\":\"10.1109/SiPhotonics55903.2023.10141918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolution Neural Networks are one of the most powerful types of Neural Networks. However, the 2D convolution task is computationally heavy. Here, we present an integrated Silicon Photonic chip that can perform the Joint Transfer Convolution, using the properties of light propagation.\",\"PeriodicalId\":105710,\"journal\":{\"name\":\"2023 IEEE Silicon Photonics Conference (SiPhotonics)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Silicon Photonics Conference (SiPhotonics)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPhotonics55903.2023.10141918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Silicon Photonics Conference (SiPhotonics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPhotonics55903.2023.10141918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络是神经网络中最强大的类型之一。然而,二维卷积任务的计算量很大。在这里,我们提出了一个集成的硅光子芯片,可以执行联合传递卷积,利用光的传播特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design, Packaging, and Testing of Silicon Photonics JTC for Convolution Neural Network
Convolution Neural Networks are one of the most powerful types of Neural Networks. However, the 2D convolution task is computationally heavy. Here, we present an integrated Silicon Photonic chip that can perform the Joint Transfer Convolution, using the properties of light propagation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信