鲁棒的未知视频理解各种监控环境

Prashant W. Patil, Jasdeep Singh, Praful Hambarde, Ashutosh Kulkarni, S. Chaudhary, S. Murala
{"title":"鲁棒的未知视频理解各种监控环境","authors":"Prashant W. Patil, Jasdeep Singh, Praful Hambarde, Ashutosh Kulkarni, S. Chaudhary, S. Murala","doi":"10.1109/AVSS56176.2022.9959513","DOIUrl":null,"url":null,"abstract":"Automated video-based applications are a highly demanding technique from a security perspective, where detection of moving objects i.e., moving object segmentation (MOS) is performed. Therefore, we have proposed an effective solution with a spatio-temporal squeeze excitation mechanism (SqEm) based multi-level feature sharing encoder-decoder network for MOS. Here, the SqEm module is proposed to get prominent foreground edge information using spatio-temporal features. Further, a multi-level feature sharing residual decoder module is proposed with respective SqEm features and previous output features for accurate and consistent foreground segmentation. To handle the foreground or background class imbalance issue, we propose a region of interest-based edge loss. The extensive experimental analysis on three databases is conducted. Result analysis and ablation study proved the robustness of the proposed network for unseen video understanding over SOTA methods.","PeriodicalId":408581,"journal":{"name":"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Unseen Video Understanding for Various Surveillance Environments\",\"authors\":\"Prashant W. Patil, Jasdeep Singh, Praful Hambarde, Ashutosh Kulkarni, S. Chaudhary, S. Murala\",\"doi\":\"10.1109/AVSS56176.2022.9959513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated video-based applications are a highly demanding technique from a security perspective, where detection of moving objects i.e., moving object segmentation (MOS) is performed. Therefore, we have proposed an effective solution with a spatio-temporal squeeze excitation mechanism (SqEm) based multi-level feature sharing encoder-decoder network for MOS. Here, the SqEm module is proposed to get prominent foreground edge information using spatio-temporal features. Further, a multi-level feature sharing residual decoder module is proposed with respective SqEm features and previous output features for accurate and consistent foreground segmentation. To handle the foreground or background class imbalance issue, we propose a region of interest-based edge loss. The extensive experimental analysis on three databases is conducted. Result analysis and ablation study proved the robustness of the proposed network for unseen video understanding over SOTA methods.\",\"PeriodicalId\":408581,\"journal\":{\"name\":\"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS56176.2022.9959513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS56176.2022.9959513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从安全角度来看,基于视频的自动化应用是一项要求很高的技术,其中检测移动物体,即执行移动物体分割(MOS)。因此,我们提出了一种基于时空挤压激励机制(SqEm)的MOS多层特征共享编码器-解码器网络的有效解决方案。本文提出利用时空特征提取突出的前景边缘信息的SqEm模块。在此基础上,提出了一种多级特征共享残差解码器模块,该模块具有各自的SqEm特征和先前的输出特征,以实现准确一致的前景分割。为了解决前景或背景类不平衡问题,我们提出了一个基于兴趣的边缘损失区域。在三个数据库上进行了广泛的实验分析。结果分析和消融研究证明了该网络对未见视频理解的鲁棒性优于SOTA方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Unseen Video Understanding for Various Surveillance Environments
Automated video-based applications are a highly demanding technique from a security perspective, where detection of moving objects i.e., moving object segmentation (MOS) is performed. Therefore, we have proposed an effective solution with a spatio-temporal squeeze excitation mechanism (SqEm) based multi-level feature sharing encoder-decoder network for MOS. Here, the SqEm module is proposed to get prominent foreground edge information using spatio-temporal features. Further, a multi-level feature sharing residual decoder module is proposed with respective SqEm features and previous output features for accurate and consistent foreground segmentation. To handle the foreground or background class imbalance issue, we propose a region of interest-based edge loss. The extensive experimental analysis on three databases is conducted. Result analysis and ablation study proved the robustness of the proposed network for unseen video understanding over SOTA methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信