基于功能区的自行车系统扩展分层需求预测

Junming Liu, Leilei Sun, Qiao Li, Jingci Ming, Yanchi Liu, Hui Xiong
{"title":"基于功能区的自行车系统扩展分层需求预测","authors":"Junming Liu, Leilei Sun, Qiao Li, Jingci Ming, Yanchi Liu, Hui Xiong","doi":"10.1145/3097983.3098180","DOIUrl":null,"url":null,"abstract":"Bike sharing systems, aiming at providing the missing links in public transportation systems, are becoming popular in urban cities. Many providers of bike sharing systems are ready to expand their bike stations from the existing service area to surrounding regions. A key to success for a bike sharing systems expansion is the bike demand prediction for expansion areas. There are two major challenges in this demand prediction problem: First. the bike transition records are not available for the expansion area and second. station level bike demand have big variances across the urban city. Previous research efforts mainly focus on discovering global features, assuming the station bike demands react equally to the global features, which brings large prediction error when the urban area is large and highly diversified. To address these challenges, in this paper, we develop a hierarchical station bike demand predictor which analyzes bike demands from functional zone level to station level. Specifically, we first divide the studied bike stations into functional zones by a novel Bi-clustering algorithm which is designed to cluster bike stations with similar POI characteristics and close geographical distances together. Then, the hourly bike check-ins and check-outs of functional zones are predicted by integrating three influential factors: distance preference, zone-to-zone preference, and zone characteristics. The station demand is estimated by studying the demand distributions among the stations within the same functional zone. Finally, the extensive experimental results on the NYC Citi Bike system with two expansion stages show the advantages of our approach on station demand and balance prediction for bike sharing system expansions.","PeriodicalId":314049,"journal":{"name":"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Functional Zone Based Hierarchical Demand Prediction For Bike System Expansion\",\"authors\":\"Junming Liu, Leilei Sun, Qiao Li, Jingci Ming, Yanchi Liu, Hui Xiong\",\"doi\":\"10.1145/3097983.3098180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bike sharing systems, aiming at providing the missing links in public transportation systems, are becoming popular in urban cities. Many providers of bike sharing systems are ready to expand their bike stations from the existing service area to surrounding regions. A key to success for a bike sharing systems expansion is the bike demand prediction for expansion areas. There are two major challenges in this demand prediction problem: First. the bike transition records are not available for the expansion area and second. station level bike demand have big variances across the urban city. Previous research efforts mainly focus on discovering global features, assuming the station bike demands react equally to the global features, which brings large prediction error when the urban area is large and highly diversified. To address these challenges, in this paper, we develop a hierarchical station bike demand predictor which analyzes bike demands from functional zone level to station level. Specifically, we first divide the studied bike stations into functional zones by a novel Bi-clustering algorithm which is designed to cluster bike stations with similar POI characteristics and close geographical distances together. Then, the hourly bike check-ins and check-outs of functional zones are predicted by integrating three influential factors: distance preference, zone-to-zone preference, and zone characteristics. The station demand is estimated by studying the demand distributions among the stations within the same functional zone. Finally, the extensive experimental results on the NYC Citi Bike system with two expansion stages show the advantages of our approach on station demand and balance prediction for bike sharing system expansions.\",\"PeriodicalId\":314049,\"journal\":{\"name\":\"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3097983.3098180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3097983.3098180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

自行车共享系统旨在弥补公共交通系统中缺失的环节,在城市中越来越受欢迎。许多共享单车供应商准备将他们的自行车站从现有的服务区扩展到周边地区。共享单车系统扩张成功的关键是对扩张区域的单车需求预测。在这个需求预测问题中有两个主要挑战:第一。扩展区域和第二区域没有自行车转换记录。站级自行车需求在城市中有很大的差异。以往的研究主要集中在发现全局特征上,假设车站自行车需求对全局特征的反应是相等的,当城市面积大且高度多样化时,预测误差很大。为了解决这些挑战,本文开发了一个分层的车站自行车需求预测器,从功能区层面到车站层面分析自行车需求。具体而言,我们首先采用一种新颖的双聚类算法将研究的自行车站点划分为功能区,该算法旨在将POI特征相似且地理距离近的自行车站点聚在一起。然后,综合距离偏好、片区间偏好、片区特征三个影响因素,对功能区每小时自行车签到和签到情况进行预测。通过研究同一功能区内各车站之间的需求分布来估算车站需求。最后,在纽约市花旗自行车系统的两个扩展阶段的大量实验结果表明,我们的方法在共享自行车系统扩展的站点需求和平衡预测方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional Zone Based Hierarchical Demand Prediction For Bike System Expansion
Bike sharing systems, aiming at providing the missing links in public transportation systems, are becoming popular in urban cities. Many providers of bike sharing systems are ready to expand their bike stations from the existing service area to surrounding regions. A key to success for a bike sharing systems expansion is the bike demand prediction for expansion areas. There are two major challenges in this demand prediction problem: First. the bike transition records are not available for the expansion area and second. station level bike demand have big variances across the urban city. Previous research efforts mainly focus on discovering global features, assuming the station bike demands react equally to the global features, which brings large prediction error when the urban area is large and highly diversified. To address these challenges, in this paper, we develop a hierarchical station bike demand predictor which analyzes bike demands from functional zone level to station level. Specifically, we first divide the studied bike stations into functional zones by a novel Bi-clustering algorithm which is designed to cluster bike stations with similar POI characteristics and close geographical distances together. Then, the hourly bike check-ins and check-outs of functional zones are predicted by integrating three influential factors: distance preference, zone-to-zone preference, and zone characteristics. The station demand is estimated by studying the demand distributions among the stations within the same functional zone. Finally, the extensive experimental results on the NYC Citi Bike system with two expansion stages show the advantages of our approach on station demand and balance prediction for bike sharing system expansions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信