从无用的图像变化中分离有用的人脸识别

P. Kalocsai
{"title":"从无用的图像变化中分离有用的人脸识别","authors":"P. Kalocsai","doi":"10.1109/ICIP.2004.1421472","DOIUrl":null,"url":null,"abstract":"For a general purpose face recognition system one of the largest challenge is to separate useful identity related from useless variations in the image data due to nuisance variables such as: orientation, lighting, expression, possible disguise. A recognition system is presented in which the effect of the secondary/nuisance variables is to a large degree accounted for before the matching process even begins. Greatly improved performance is shown on a large database of faces in 42 conditions.","PeriodicalId":184798,"journal":{"name":"2004 International Conference on Image Processing, 2004. ICIP '04.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separating useful from useless image variation for face recognition\",\"authors\":\"P. Kalocsai\",\"doi\":\"10.1109/ICIP.2004.1421472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a general purpose face recognition system one of the largest challenge is to separate useful identity related from useless variations in the image data due to nuisance variables such as: orientation, lighting, expression, possible disguise. A recognition system is presented in which the effect of the secondary/nuisance variables is to a large degree accounted for before the matching process even begins. Greatly improved performance is shown on a large database of faces in 42 conditions.\",\"PeriodicalId\":184798,\"journal\":{\"name\":\"2004 International Conference on Image Processing, 2004. ICIP '04.\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 International Conference on Image Processing, 2004. ICIP '04.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2004.1421472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Image Processing, 2004. ICIP '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2004.1421472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于一个通用的人脸识别系统,最大的挑战之一是将有用的身份从图像数据中无用的变化中分离出来,这些变化是由于令人讨厌的变量,如:方向,照明,表情,可能的伪装。提出了一种识别系统,其中次要/讨厌变量的影响在匹配过程开始之前就在很大程度上得到了考虑。在42种情况下的大型人脸数据库上显示了极大的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separating useful from useless image variation for face recognition
For a general purpose face recognition system one of the largest challenge is to separate useful identity related from useless variations in the image data due to nuisance variables such as: orientation, lighting, expression, possible disguise. A recognition system is presented in which the effect of the secondary/nuisance variables is to a large degree accounted for before the matching process even begins. Greatly improved performance is shown on a large database of faces in 42 conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信