用于安全车辆通信的可扩展和隐私保护认证协议

Shrikant S. Tangade, S. Manvi
{"title":"用于安全车辆通信的可扩展和隐私保护认证协议","authors":"Shrikant S. Tangade, S. Manvi","doi":"10.1109/ANTS.2016.7947800","DOIUrl":null,"url":null,"abstract":"Most of the existing authentication protocols are based on either asymmetric cryptography like public-key infrastructure (PKI) or symmetric cryptography. The PKI-based authentication protocols are strongly recommended for solving security issues in VANETs. However, they have following shortcomings: (1) lengthy certificates lead to transmission and computation overheads, and (2) lack of privacy-preservation due to revealing of vehicle identity, communicated in broadcasting safety-message. Symmetric cryptography based protocols are faster because of a single secret key and simplicity; however, it does not ensure non-repudiation. In this paper, we present an Efficient, Scalable and Privacy-preserving Authentication (ESPA) protocol for secure vehicular ad hoc networks (VANETs). The protocol employs hybrid cryptography. In ESPA, the asymmetric PKI based pre-authentication and the symmetric hash message authentication code (HMAC) based authentication are adopted during vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communications, respectively. Extensive simulations are conducted to validate proposed ESPA protocol and compared with the existing work based on PKI and HMAC. The performance analysis showed that ESPA is more efficient, scalable and privacy-preserving secured protocol than the existing work.","PeriodicalId":248902,"journal":{"name":"2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Scalable and privacy-preserving authentication protocol for secure vehicular communications\",\"authors\":\"Shrikant S. Tangade, S. Manvi\",\"doi\":\"10.1109/ANTS.2016.7947800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the existing authentication protocols are based on either asymmetric cryptography like public-key infrastructure (PKI) or symmetric cryptography. The PKI-based authentication protocols are strongly recommended for solving security issues in VANETs. However, they have following shortcomings: (1) lengthy certificates lead to transmission and computation overheads, and (2) lack of privacy-preservation due to revealing of vehicle identity, communicated in broadcasting safety-message. Symmetric cryptography based protocols are faster because of a single secret key and simplicity; however, it does not ensure non-repudiation. In this paper, we present an Efficient, Scalable and Privacy-preserving Authentication (ESPA) protocol for secure vehicular ad hoc networks (VANETs). The protocol employs hybrid cryptography. In ESPA, the asymmetric PKI based pre-authentication and the symmetric hash message authentication code (HMAC) based authentication are adopted during vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communications, respectively. Extensive simulations are conducted to validate proposed ESPA protocol and compared with the existing work based on PKI and HMAC. The performance analysis showed that ESPA is more efficient, scalable and privacy-preserving secured protocol than the existing work.\",\"PeriodicalId\":248902,\"journal\":{\"name\":\"2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANTS.2016.7947800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTS.2016.7947800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

大多数现有的身份验证协议要么基于非对称加密,如公钥基础设施(PKI),要么基于对称加密。强烈建议使用基于pki的认证协议来解决vanet中的安全问题。然而,它们有以下缺点:(1)冗长的证书导致传输和计算开销;(2)由于在广播安全信息中传达的车辆身份暴露而缺乏隐私保护。基于对称密码学的协议由于密钥单一和简单,速度更快;然而,它并不能保证不可抵赖性。在本文中,我们提出了一种用于安全车辆自组织网络(vanet)的高效,可扩展和隐私保护的身份验证(ESPA)协议。该协议采用混合加密技术。ESPA在车对基础设施(V2I)通信和车对车(V2V)通信中分别采用了基于非对称PKI的预认证和基于对称哈希消息认证码(HMAC)的认证。通过仿真验证了ESPA协议的有效性,并与基于PKI和HMAC的现有协议进行了比较。性能分析表明,ESPA协议比现有协议具有更高的效率、可扩展性和隐私保护性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable and privacy-preserving authentication protocol for secure vehicular communications
Most of the existing authentication protocols are based on either asymmetric cryptography like public-key infrastructure (PKI) or symmetric cryptography. The PKI-based authentication protocols are strongly recommended for solving security issues in VANETs. However, they have following shortcomings: (1) lengthy certificates lead to transmission and computation overheads, and (2) lack of privacy-preservation due to revealing of vehicle identity, communicated in broadcasting safety-message. Symmetric cryptography based protocols are faster because of a single secret key and simplicity; however, it does not ensure non-repudiation. In this paper, we present an Efficient, Scalable and Privacy-preserving Authentication (ESPA) protocol for secure vehicular ad hoc networks (VANETs). The protocol employs hybrid cryptography. In ESPA, the asymmetric PKI based pre-authentication and the symmetric hash message authentication code (HMAC) based authentication are adopted during vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communications, respectively. Extensive simulations are conducted to validate proposed ESPA protocol and compared with the existing work based on PKI and HMAC. The performance analysis showed that ESPA is more efficient, scalable and privacy-preserving secured protocol than the existing work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信