部分集多覆盖问题的随机化算法

A. Gorgi, M. El Ouali, M. Hachimi, S. Krit
{"title":"部分集多覆盖问题的随机化算法","authors":"A. Gorgi, M. El Ouali, M. Hachimi, S. Krit","doi":"10.1145/3234698.3234772","DOIUrl":null,"url":null,"abstract":"In this paper we analyze the minimum cardinality PARTIAL SET b-MULTICOVER problem in uniform and regular hypergraphs. The problem is defined as follows: Let k ϵ ≥1, b ≥ 2 and a hypergraph H = (V,E) with maximum vertex degree Δ and maximum edge size l, a PARTIAL SET b-MULTICOVER in H is a set of edges C ⊆ E such that every vertex in a subset U ⊆ V with |U |≥ k, belongs to at least b edges in C. PARTIAL SET b-MULTICOVER problem is the problem of finding a PARTIAL SET b-MULTICOVER of minimum cardinality. We present a randomized algorithm of hybrid type for this problem, combining LP-based randomized rounding with greedy repairing. We achieve an approximation ratio of α(n,k)n/k(Δ-b+1) with α(n,k) < 2 a factor depends on n and k for hypergraphs with lϵO(n1/5). Furthermore we consider the SET b-MULTICOVER problem in hypergraphs i.e., the PARTIAL SET b-MULTICOVER problem for k = n. It remained an open problem whether an approximation ratio of α(Δ -- b+1) with a constant α > 1 can be proved unless P = NP. This was conjectured by Peleg, Schechtman and Wool (Algorithmica 1997). We present a randomized algorithm for SET b-MULTICOVER, and achieve an approximation ratio of (1 - 1/2√2√n) (Δ -- b+1) for hypergraphs with maximum edge size lϵO(n1/2). The results for both problems presented in this paper improve for large set of instances over the known results.","PeriodicalId":144334,"journal":{"name":"Proceedings of the Fourth International Conference on Engineering & MIS 2018","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Randomized algorithm for the partial set multicover problem\",\"authors\":\"A. Gorgi, M. El Ouali, M. Hachimi, S. Krit\",\"doi\":\"10.1145/3234698.3234772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we analyze the minimum cardinality PARTIAL SET b-MULTICOVER problem in uniform and regular hypergraphs. The problem is defined as follows: Let k ϵ ≥1, b ≥ 2 and a hypergraph H = (V,E) with maximum vertex degree Δ and maximum edge size l, a PARTIAL SET b-MULTICOVER in H is a set of edges C ⊆ E such that every vertex in a subset U ⊆ V with |U |≥ k, belongs to at least b edges in C. PARTIAL SET b-MULTICOVER problem is the problem of finding a PARTIAL SET b-MULTICOVER of minimum cardinality. We present a randomized algorithm of hybrid type for this problem, combining LP-based randomized rounding with greedy repairing. We achieve an approximation ratio of α(n,k)n/k(Δ-b+1) with α(n,k) < 2 a factor depends on n and k for hypergraphs with lϵO(n1/5). Furthermore we consider the SET b-MULTICOVER problem in hypergraphs i.e., the PARTIAL SET b-MULTICOVER problem for k = n. It remained an open problem whether an approximation ratio of α(Δ -- b+1) with a constant α > 1 can be proved unless P = NP. This was conjectured by Peleg, Schechtman and Wool (Algorithmica 1997). We present a randomized algorithm for SET b-MULTICOVER, and achieve an approximation ratio of (1 - 1/2√2√n) (Δ -- b+1) for hypergraphs with maximum edge size lϵO(n1/2). The results for both problems presented in this paper improve for large set of instances over the known results.\",\"PeriodicalId\":144334,\"journal\":{\"name\":\"Proceedings of the Fourth International Conference on Engineering & MIS 2018\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth International Conference on Engineering & MIS 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3234698.3234772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Conference on Engineering & MIS 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3234698.3234772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了一致超图和正则超图的最小基数偏集b-MULTICOVER问题。问题定义如下:让kϵ≥1,b≥2和一个超图H = (V, E)与最大顶点度Δ和最大边缘尺寸l,部分设置b-MULTICOVER H是一组每个顶点的边C⊆E这样的一个子集U V |⊆|≥k,至少属于b边C部分设置b-MULTICOVER问题是发现问题的部分设置b-MULTICOVER最低基数。将基于lp的随机舍入与贪婪修复相结合,提出了一种混合型随机算法。我们实现了α(n,k)n/k(Δ-b+1)与α(n,k) < 2的近似比率,对于lϵO(n1/5)的超图,因子取决于n和k。进一步考虑超图中的SET b- multicover问题,即k = n时的部分SET b- multicover问题。对于常数α > 1的近似比α(Δ—b+1)是否能证明,除非P = NP,这仍然是一个开放问题。这是由Peleg, Schechtman和Wool (Algorithmica 1997)推测出来的。我们提出了SET b- multicover的随机化算法,并对最大边大小lϵO(n1/2)的超图实现了近似比(1 - 1/2√2√n) (Δ—b+1)。本文给出的两个问题的结果在大量实例的情况下都比已知结果有所改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Randomized algorithm for the partial set multicover problem
In this paper we analyze the minimum cardinality PARTIAL SET b-MULTICOVER problem in uniform and regular hypergraphs. The problem is defined as follows: Let k ϵ ≥1, b ≥ 2 and a hypergraph H = (V,E) with maximum vertex degree Δ and maximum edge size l, a PARTIAL SET b-MULTICOVER in H is a set of edges C ⊆ E such that every vertex in a subset U ⊆ V with |U |≥ k, belongs to at least b edges in C. PARTIAL SET b-MULTICOVER problem is the problem of finding a PARTIAL SET b-MULTICOVER of minimum cardinality. We present a randomized algorithm of hybrid type for this problem, combining LP-based randomized rounding with greedy repairing. We achieve an approximation ratio of α(n,k)n/k(Δ-b+1) with α(n,k) < 2 a factor depends on n and k for hypergraphs with lϵO(n1/5). Furthermore we consider the SET b-MULTICOVER problem in hypergraphs i.e., the PARTIAL SET b-MULTICOVER problem for k = n. It remained an open problem whether an approximation ratio of α(Δ -- b+1) with a constant α > 1 can be proved unless P = NP. This was conjectured by Peleg, Schechtman and Wool (Algorithmica 1997). We present a randomized algorithm for SET b-MULTICOVER, and achieve an approximation ratio of (1 - 1/2√2√n) (Δ -- b+1) for hypergraphs with maximum edge size lϵO(n1/2). The results for both problems presented in this paper improve for large set of instances over the known results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信