重新审视概念漂移对准时制质量保证的影响

K. E. Bennin, N. Ali, J. Börstler, Xiao Yu
{"title":"重新审视概念漂移对准时制质量保证的影响","authors":"K. E. Bennin, N. Ali, J. Börstler, Xiao Yu","doi":"10.1109/QRS51102.2020.00020","DOIUrl":null,"url":null,"abstract":"The performance of software defect prediction(SDP) models is known to be dependent on the datasets used for training the models. Evolving data in a dynamic software development environment such as significant refactoring and organizational changes introduces new concept to the prediction model, thus making improved classification performance difficult. In this study, we investigate and assess the existence and impact of concept drift on SDP performances. We empirically asses the prediction performance of five models by conducting cross-version experiments using fifty-five releases of five open-source projects. Prediction performance fluctuated as the training datasets changed over time. Our results indicate that the quality and the reliability of defect prediction models fluctuate over time and that this instability should be considered by software quality teams when using historical datasets. The performance of a static predictor constructed with data from historical versions may degrade over time due to the challenges posed by concept drift.","PeriodicalId":301814,"journal":{"name":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Revisiting the Impact of Concept Drift on Just-in-Time Quality Assurance\",\"authors\":\"K. E. Bennin, N. Ali, J. Börstler, Xiao Yu\",\"doi\":\"10.1109/QRS51102.2020.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of software defect prediction(SDP) models is known to be dependent on the datasets used for training the models. Evolving data in a dynamic software development environment such as significant refactoring and organizational changes introduces new concept to the prediction model, thus making improved classification performance difficult. In this study, we investigate and assess the existence and impact of concept drift on SDP performances. We empirically asses the prediction performance of five models by conducting cross-version experiments using fifty-five releases of five open-source projects. Prediction performance fluctuated as the training datasets changed over time. Our results indicate that the quality and the reliability of defect prediction models fluctuate over time and that this instability should be considered by software quality teams when using historical datasets. The performance of a static predictor constructed with data from historical versions may degrade over time due to the challenges posed by concept drift.\",\"PeriodicalId\":301814,\"journal\":{\"name\":\"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS51102.2020.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS51102.2020.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

众所周知,软件缺陷预测(SDP)模型的性能依赖于用于训练模型的数据集。动态软件开发环境中不断变化的数据(例如重大重构和组织变化)为预测模型引入了新的概念,从而使改进的分类性能变得困难。在本研究中,我们调查和评估概念漂移对SDP绩效的存在及其影响。我们通过使用五个开源项目的55个版本进行跨版本实验,经验地评估了五个模型的预测性能。预测性能随着训练数据集的变化而波动。我们的结果表明,缺陷预测模型的质量和可靠性随着时间的推移而波动,当使用历史数据集时,软件质量团队应该考虑到这种不稳定性。由于概念漂移带来的挑战,使用历史版本数据构建的静态预测器的性能可能会随着时间的推移而降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting the Impact of Concept Drift on Just-in-Time Quality Assurance
The performance of software defect prediction(SDP) models is known to be dependent on the datasets used for training the models. Evolving data in a dynamic software development environment such as significant refactoring and organizational changes introduces new concept to the prediction model, thus making improved classification performance difficult. In this study, we investigate and assess the existence and impact of concept drift on SDP performances. We empirically asses the prediction performance of five models by conducting cross-version experiments using fifty-five releases of five open-source projects. Prediction performance fluctuated as the training datasets changed over time. Our results indicate that the quality and the reliability of defect prediction models fluctuate over time and that this instability should be considered by software quality teams when using historical datasets. The performance of a static predictor constructed with data from historical versions may degrade over time due to the challenges posed by concept drift.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信