{"title":"分析专业人士在LinkedIn上的MOOC条目,为用户建模和个性化的MOOC建议","authors":"Guangyuan Piao, J. Breslin","doi":"10.1145/2930238.2930264","DOIUrl":null,"url":null,"abstract":"The main contribution of this work is the comparison of three user modeling strategies based on job titles, educational fields and skills in LinkedIn profiles, for personalized MOOC recommendations in a cold start situation. Results show that the skill-based user modeling strategy performs best, followed by the job- and edu-based strategies.","PeriodicalId":339100,"journal":{"name":"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Analyzing MOOC Entries of Professionals on LinkedIn for User Modeling and Personalized MOOC Recommendations\",\"authors\":\"Guangyuan Piao, J. Breslin\",\"doi\":\"10.1145/2930238.2930264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main contribution of this work is the comparison of three user modeling strategies based on job titles, educational fields and skills in LinkedIn profiles, for personalized MOOC recommendations in a cold start situation. Results show that the skill-based user modeling strategy performs best, followed by the job- and edu-based strategies.\",\"PeriodicalId\":339100,\"journal\":{\"name\":\"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2930238.2930264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2930238.2930264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analyzing MOOC Entries of Professionals on LinkedIn for User Modeling and Personalized MOOC Recommendations
The main contribution of this work is the comparison of three user modeling strategies based on job titles, educational fields and skills in LinkedIn profiles, for personalized MOOC recommendations in a cold start situation. Results show that the skill-based user modeling strategy performs best, followed by the job- and edu-based strategies.