{"title":"具有选择性渗透的间隙结通道的分子通信模型","authors":"Yiqun Yang, C. Yeo","doi":"10.1109/ICON.2012.6506566","DOIUrl":null,"url":null,"abstract":"With rapid development in biological and nano areas, new communication methods promise novel solutions for various research issues. Due to the simple structure and the limited size of nanomachines, nanonetworks have conspicuous differences from traditional networks. Hence exploratory analysis and theory are expected. Molecular communication, which involves biological components in nanoscale, provides a more compatible approach to medical, environmental and agricultural research. Calcium ion (Ca2+), which is one of the most important universal second messengers in vivo cells, participates actively in the regulation of cellular activities. In this paper, we model the molecular communication system through gap junction channels. We present simulation results for patterned cells with different permeabilities. We analyze the propagation characteristics of intercellular calcium waves which are induced by the diffusion of inositol (l, 4, 5)-trisphosphate (IP3).","PeriodicalId":234594,"journal":{"name":"2012 18th IEEE International Conference on Networks (ICON)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular communication model through gap junction channel with selective permeabilities\",\"authors\":\"Yiqun Yang, C. Yeo\",\"doi\":\"10.1109/ICON.2012.6506566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With rapid development in biological and nano areas, new communication methods promise novel solutions for various research issues. Due to the simple structure and the limited size of nanomachines, nanonetworks have conspicuous differences from traditional networks. Hence exploratory analysis and theory are expected. Molecular communication, which involves biological components in nanoscale, provides a more compatible approach to medical, environmental and agricultural research. Calcium ion (Ca2+), which is one of the most important universal second messengers in vivo cells, participates actively in the regulation of cellular activities. In this paper, we model the molecular communication system through gap junction channels. We present simulation results for patterned cells with different permeabilities. We analyze the propagation characteristics of intercellular calcium waves which are induced by the diffusion of inositol (l, 4, 5)-trisphosphate (IP3).\",\"PeriodicalId\":234594,\"journal\":{\"name\":\"2012 18th IEEE International Conference on Networks (ICON)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 18th IEEE International Conference on Networks (ICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICON.2012.6506566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 18th IEEE International Conference on Networks (ICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICON.2012.6506566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular communication model through gap junction channel with selective permeabilities
With rapid development in biological and nano areas, new communication methods promise novel solutions for various research issues. Due to the simple structure and the limited size of nanomachines, nanonetworks have conspicuous differences from traditional networks. Hence exploratory analysis and theory are expected. Molecular communication, which involves biological components in nanoscale, provides a more compatible approach to medical, environmental and agricultural research. Calcium ion (Ca2+), which is one of the most important universal second messengers in vivo cells, participates actively in the regulation of cellular activities. In this paper, we model the molecular communication system through gap junction channels. We present simulation results for patterned cells with different permeabilities. We analyze the propagation characteristics of intercellular calcium waves which are induced by the diffusion of inositol (l, 4, 5)-trisphosphate (IP3).