基于扩展噪声自适应二值模式的服装图案分类

A. Akter, Badal Chandra Mitra, Rahat Hossain Faisal, Md. Mostafijur Rahman
{"title":"基于扩展噪声自适应二值模式的服装图案分类","authors":"A. Akter, Badal Chandra Mitra, Rahat Hossain Faisal, Md. Mostafijur Rahman","doi":"10.1109/IC4ME247184.2019.9036615","DOIUrl":null,"url":null,"abstract":"Garments and fashion industries play a vital role in our economy. The automatic classification and recognition of garments design class may help in development of fashion industry. For this purpose, different feature descriptors have been proposed to extract discriminative information from the garments texture images. In this paper we proposed a new descriptor namely Extended Noise Adaptive Binary Pattern (ENABP). To evaluate this descriptor, we use two different publicly available datasets (Fashion and Clothing attribute dataset). The experimental result shows that ENABP produces better accuracy than NABP and other existing descriptor.","PeriodicalId":368690,"journal":{"name":"2019 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended Noise Adaptive Binary Pattern for Garments Pattern Classification\",\"authors\":\"A. Akter, Badal Chandra Mitra, Rahat Hossain Faisal, Md. Mostafijur Rahman\",\"doi\":\"10.1109/IC4ME247184.2019.9036615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Garments and fashion industries play a vital role in our economy. The automatic classification and recognition of garments design class may help in development of fashion industry. For this purpose, different feature descriptors have been proposed to extract discriminative information from the garments texture images. In this paper we proposed a new descriptor namely Extended Noise Adaptive Binary Pattern (ENABP). To evaluate this descriptor, we use two different publicly available datasets (Fashion and Clothing attribute dataset). The experimental result shows that ENABP produces better accuracy than NABP and other existing descriptor.\",\"PeriodicalId\":368690,\"journal\":{\"name\":\"2019 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC4ME247184.2019.9036615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC4ME247184.2019.9036615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

服装和时尚产业在我们的经济中起着至关重要的作用。服装设计等级的自动分类与识别有助于服装产业的发展。为此,提出了不同的特征描述符来从服装纹理图像中提取判别信息。本文提出了一种新的描述符——扩展噪声自适应二值模式(ENABP)。为了评估这个描述符,我们使用两个不同的公开可用数据集(Fashion和Clothing属性数据集)。实验结果表明,与NABP和其他现有描述符相比,ENABP具有更好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended Noise Adaptive Binary Pattern for Garments Pattern Classification
Garments and fashion industries play a vital role in our economy. The automatic classification and recognition of garments design class may help in development of fashion industry. For this purpose, different feature descriptors have been proposed to extract discriminative information from the garments texture images. In this paper we proposed a new descriptor namely Extended Noise Adaptive Binary Pattern (ENABP). To evaluate this descriptor, we use two different publicly available datasets (Fashion and Clothing attribute dataset). The experimental result shows that ENABP produces better accuracy than NABP and other existing descriptor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信