基于优先级的非抢占片上网络中动态任务重映射的功率和延迟性能改进

J. Harbin, L. Indrusiak
{"title":"基于优先级的非抢占片上网络中动态任务重映射的功率和延迟性能改进","authors":"J. Harbin, L. Indrusiak","doi":"10.1109/ReCoSoC.2013.6581526","DOIUrl":null,"url":null,"abstract":"In dynamic system-on-chip and multicore CPU applications, the communication patterns between tasks are not easy to characterise in advance. Dynamic task mapping is commonly used in Network-On-Chip (NoC) research in order to redistribute tasks around network processing elements at runtime in response to changes in network loading. Dynamic task mapping is anticipated to become more important as general purpose CPUs become massively multicore and system-on-chip (SoC) designs become more reconfigurable in their application usage patterns. Simultaneously, reducing NoC power consumption is a necessary consideration in the development of future scaleable and energy efficient NoC systems. The work illustrated here uses a dynamic metric which combines contention and the power consumption impact of task remapping decisions, in order to produce a non-preemptive NoC that can deliver as good or better latency as a preemptive NoC in a real application scenario, while reducing overall power consumption. The results obtained show a power consumption reduction of approximately 35% in an application case involving an autonomous vehicle application, and significant reductions in the latency of individual flows.","PeriodicalId":354964,"journal":{"name":"2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Dynamic task remapping for power and latency performance improvement in priority-based non-preemptive Networks On Chip\",\"authors\":\"J. Harbin, L. Indrusiak\",\"doi\":\"10.1109/ReCoSoC.2013.6581526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In dynamic system-on-chip and multicore CPU applications, the communication patterns between tasks are not easy to characterise in advance. Dynamic task mapping is commonly used in Network-On-Chip (NoC) research in order to redistribute tasks around network processing elements at runtime in response to changes in network loading. Dynamic task mapping is anticipated to become more important as general purpose CPUs become massively multicore and system-on-chip (SoC) designs become more reconfigurable in their application usage patterns. Simultaneously, reducing NoC power consumption is a necessary consideration in the development of future scaleable and energy efficient NoC systems. The work illustrated here uses a dynamic metric which combines contention and the power consumption impact of task remapping decisions, in order to produce a non-preemptive NoC that can deliver as good or better latency as a preemptive NoC in a real application scenario, while reducing overall power consumption. The results obtained show a power consumption reduction of approximately 35% in an application case involving an autonomous vehicle application, and significant reductions in the latency of individual flows.\",\"PeriodicalId\":354964,\"journal\":{\"name\":\"2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ReCoSoC.2013.6581526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReCoSoC.2013.6581526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在动态片上系统和多核CPU应用中,任务之间的通信模式不容易预先表征。动态任务映射是片上网络(NoC)研究中常用的一种方法,目的是在运行时根据网络负载的变化,在网络处理单元周围重新分配任务。随着通用cpu大规模多核化,以及片上系统(SoC)设计在其应用程序使用模式中变得更加可重构,预计动态任务映射将变得更加重要。同时,在未来可扩展和节能的NoC系统的发展中,降低NoC功耗是一个必要的考虑因素。这里说明的工作使用了一个动态度量,它结合了任务重新映射决策的争用和功耗影响,以便产生一个非抢占式NoC,在实际应用场景中,它可以提供与抢占式NoC一样好的或更好的延迟,同时降低总体功耗。所获得的结果表明,在涉及自动驾驶汽车应用的应用案例中,功耗降低了约35%,并且显著降低了单个流的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic task remapping for power and latency performance improvement in priority-based non-preemptive Networks On Chip
In dynamic system-on-chip and multicore CPU applications, the communication patterns between tasks are not easy to characterise in advance. Dynamic task mapping is commonly used in Network-On-Chip (NoC) research in order to redistribute tasks around network processing elements at runtime in response to changes in network loading. Dynamic task mapping is anticipated to become more important as general purpose CPUs become massively multicore and system-on-chip (SoC) designs become more reconfigurable in their application usage patterns. Simultaneously, reducing NoC power consumption is a necessary consideration in the development of future scaleable and energy efficient NoC systems. The work illustrated here uses a dynamic metric which combines contention and the power consumption impact of task remapping decisions, in order to produce a non-preemptive NoC that can deliver as good or better latency as a preemptive NoC in a real application scenario, while reducing overall power consumption. The results obtained show a power consumption reduction of approximately 35% in an application case involving an autonomous vehicle application, and significant reductions in the latency of individual flows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信