27.1 A 2.8µW 80mvpp -线性输入范围1.6GΩ-input阻抗生物信号斩波放大器,可承受高达650mVpp的共模干扰

H. Chandrakumar, D. Markovic
{"title":"27.1 A 2.8µW 80mvpp -线性输入范围1.6GΩ-input阻抗生物信号斩波放大器,可承受高达650mVpp的共模干扰","authors":"H. Chandrakumar, D. Markovic","doi":"10.1109/ISSCC.2017.7870454","DOIUrl":null,"url":null,"abstract":"Closed-loop neuromodulation with simultaneous stimulation and sensing is desired to administer therapy in patients suffering from drug-resistant neurological ailments. However, stimulation generates large artifacts at the recording sites, which saturate traditional front-ends. The common-mode (CM) artifact can be ∼500mV, and the differential-mode (DM) artifact is 50 to 100mV. This work presents a neural recording chopper amplifier that can tolerate 80mV<inf>pp</inf> DM and 650mV<inf>pp</inf> CM artifacts in a signal band of 1Hz to 5kHz. To digitize a 2mV<inf>pp</inf> neural signal to 8b accompanied by an 80mV<inf>pp</inf> DM artifact requires a linearity of 80dB. Neural recording front-ends also need to function within a power budget of 3 to 5µW/ch, input-referred noise of 4 to 8µV<inf>rms</inf>, DC input impedance Z<inf>in</inf>>1GΩ and high-pass cutoff of 1Hz [1,2]. Prior work has addressed power and noise [2–6], but has low Z<inf>in</inf> and limited input signal range, making them incapable of performing true closed-loop operation.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"27.1 A 2.8µW 80mVpp-linear-input-range 1.6GΩ-input impedance bio-signal chopper amplifier tolerant to common-mode interference up to 650mVpp\",\"authors\":\"H. Chandrakumar, D. Markovic\",\"doi\":\"10.1109/ISSCC.2017.7870454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Closed-loop neuromodulation with simultaneous stimulation and sensing is desired to administer therapy in patients suffering from drug-resistant neurological ailments. However, stimulation generates large artifacts at the recording sites, which saturate traditional front-ends. The common-mode (CM) artifact can be ∼500mV, and the differential-mode (DM) artifact is 50 to 100mV. This work presents a neural recording chopper amplifier that can tolerate 80mV<inf>pp</inf> DM and 650mV<inf>pp</inf> CM artifacts in a signal band of 1Hz to 5kHz. To digitize a 2mV<inf>pp</inf> neural signal to 8b accompanied by an 80mV<inf>pp</inf> DM artifact requires a linearity of 80dB. Neural recording front-ends also need to function within a power budget of 3 to 5µW/ch, input-referred noise of 4 to 8µV<inf>rms</inf>, DC input impedance Z<inf>in</inf>>1GΩ and high-pass cutoff of 1Hz [1,2]. Prior work has addressed power and noise [2–6], but has low Z<inf>in</inf> and limited input signal range, making them incapable of performing true closed-loop operation.\",\"PeriodicalId\":269679,\"journal\":{\"name\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2017.7870454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

同时刺激和感应的闭环神经调节是治疗耐药神经系统疾病的理想方法。然而,刺激会在录制地点产生大量的伪影,使传统的前端饱和。共模(CM)伪影可达~ 500mV,差模(DM)伪影可达50 ~ 100mV。本研究提出了一种神经记录斩波放大器,可以在1Hz至5kHz的信号频带内承受80mVpp的DM和650mVpp的CM伪影。要将2mVpp的神经信号数字化为8b,并伴有80mVpp的DM伪影,需要80dB的线性度。神经记录前端还需要在3至5 μ W/ch的功率预算,4至8 μ Vrms的输入参考噪声,直流输入阻抗Zin>1GΩ和1Hz的高通截止范围内工作[1,2]。先前的工作已经解决了功率和噪声问题[2-6],但由于Zin较低,输入信号范围有限,无法实现真正的闭环操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
27.1 A 2.8µW 80mVpp-linear-input-range 1.6GΩ-input impedance bio-signal chopper amplifier tolerant to common-mode interference up to 650mVpp
Closed-loop neuromodulation with simultaneous stimulation and sensing is desired to administer therapy in patients suffering from drug-resistant neurological ailments. However, stimulation generates large artifacts at the recording sites, which saturate traditional front-ends. The common-mode (CM) artifact can be ∼500mV, and the differential-mode (DM) artifact is 50 to 100mV. This work presents a neural recording chopper amplifier that can tolerate 80mVpp DM and 650mVpp CM artifacts in a signal band of 1Hz to 5kHz. To digitize a 2mVpp neural signal to 8b accompanied by an 80mVpp DM artifact requires a linearity of 80dB. Neural recording front-ends also need to function within a power budget of 3 to 5µW/ch, input-referred noise of 4 to 8µVrms, DC input impedance Zin>1GΩ and high-pass cutoff of 1Hz [1,2]. Prior work has addressed power and noise [2–6], but has low Zin and limited input signal range, making them incapable of performing true closed-loop operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信