土地利用/覆被变化对水电生产影响的测量与制图——以福建省九龙江流域为例

黄珠美, 彭本荣
{"title":"土地利用/覆被变化对水电生产影响的测量与制图——以福建省九龙江流域为例","authors":"黄珠美, 彭本荣","doi":"10.12677/JWRR.2017.64044","DOIUrl":null,"url":null,"abstract":"水电是全球利用最广泛的可更新能源,其生产能力对土地利用/覆被的变化非常敏感。研究土地利用/覆被变化与流域水电生产的数量、价值及其空间分布的关系是流域水资源规划和管理的基础。本论文应用InVEST模型评估九龙江流域土地利用/覆被变化对水电生产数量及其价值的影响。结果表明:2000~2010年间,九龙江流域内,土地利用/覆被主要由蒸散量较大的耕地和林地转化为蒸散量较小的建设用地,产水量增加了0.66%。但由于耕地和建设用地的耗水量较其他土地利用/覆被类型大,水电生产的供水量却降低了8.46%,导致流域年均水电生产量减少1.22亿kwh,年均利润减少0.40亿元,减少幅度分别达到5.56%和6.69%。流域内水电生产数量减少主要是由土地利用/覆被变化大的城市子流域发电量减少引起的。模型验证结果显示,模型结果与实际产水量、发电量的误差分别在6%和5%以内,模型具有很高的可靠性。研究同时显示,九龙江流域产水量由上游向下游递减,上游子流域单位面积和万吨供水量水电生产的潜力最高,对流域水电生产的贡献最大,因此上游子流域的保护对流域水供给服务和水电服务能力的保障非常关键。 As the most widely used form of renewable energy in the world, the hydropower production is very sensitive to the land use and cover change (LUCC). Measuring and mapping changes in the quantity and value of hydropower production are the basis of water resource management and watershed spatial planning. This paper evaluated the impacts of LUCC on the hydropower production in Jiulong River watershed (JRW) employing the reservoir hydropower production and valuation model of InVEST. The results show that the water yield increased by 0.66% from 2000 to 2010 in JRW since LUCC is mainly converted from arable land and forest with higher evapotranspiration to construction land with lower evapotranspiration. However, the annual water supply for power generation decreased by 8.46%, due to the water consumption in arable land and construction land are higher than other land cover type, which resulted in 1.22 × 108 kwh decrease of the annual hydropower production and 4.0 × 107 yuan decrease of net present value separately. The reduction of hydropower production and its value are mainly located in urban subwatersheds whose land use cover change significantly by transforming the forest and arable land to the construction land. The model error is in the range of 6% and 5% of the actual water production and power generation respectively, and the model has high reliability. The results also show that the volume of water yield decreased from upstream to downstream, and the hy-dropower production capacity of subwatersheds in upstream is much higher than that of the down-stream. The subwatersheds in the upstream with higher water yield are critical to the water supply services in the JRW, which should be conserved when developing the spatial planning and other so-cial-economic planning in the watershed.","PeriodicalId":349946,"journal":{"name":"Journal of Water Resources Research","volume":"239 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Measuring and Mapping the Impact of Land Use and Land Cover Change on the Hydropower Production—A Case Study of Jiulong River in Fujian Province\",\"authors\":\"黄珠美, 彭本荣\",\"doi\":\"10.12677/JWRR.2017.64044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"水电是全球利用最广泛的可更新能源,其生产能力对土地利用/覆被的变化非常敏感。研究土地利用/覆被变化与流域水电生产的数量、价值及其空间分布的关系是流域水资源规划和管理的基础。本论文应用InVEST模型评估九龙江流域土地利用/覆被变化对水电生产数量及其价值的影响。结果表明:2000~2010年间,九龙江流域内,土地利用/覆被主要由蒸散量较大的耕地和林地转化为蒸散量较小的建设用地,产水量增加了0.66%。但由于耕地和建设用地的耗水量较其他土地利用/覆被类型大,水电生产的供水量却降低了8.46%,导致流域年均水电生产量减少1.22亿kwh,年均利润减少0.40亿元,减少幅度分别达到5.56%和6.69%。流域内水电生产数量减少主要是由土地利用/覆被变化大的城市子流域发电量减少引起的。模型验证结果显示,模型结果与实际产水量、发电量的误差分别在6%和5%以内,模型具有很高的可靠性。研究同时显示,九龙江流域产水量由上游向下游递减,上游子流域单位面积和万吨供水量水电生产的潜力最高,对流域水电生产的贡献最大,因此上游子流域的保护对流域水供给服务和水电服务能力的保障非常关键。 As the most widely used form of renewable energy in the world, the hydropower production is very sensitive to the land use and cover change (LUCC). Measuring and mapping changes in the quantity and value of hydropower production are the basis of water resource management and watershed spatial planning. This paper evaluated the impacts of LUCC on the hydropower production in Jiulong River watershed (JRW) employing the reservoir hydropower production and valuation model of InVEST. The results show that the water yield increased by 0.66% from 2000 to 2010 in JRW since LUCC is mainly converted from arable land and forest with higher evapotranspiration to construction land with lower evapotranspiration. However, the annual water supply for power generation decreased by 8.46%, due to the water consumption in arable land and construction land are higher than other land cover type, which resulted in 1.22 × 108 kwh decrease of the annual hydropower production and 4.0 × 107 yuan decrease of net present value separately. The reduction of hydropower production and its value are mainly located in urban subwatersheds whose land use cover change significantly by transforming the forest and arable land to the construction land. The model error is in the range of 6% and 5% of the actual water production and power generation respectively, and the model has high reliability. The results also show that the volume of water yield decreased from upstream to downstream, and the hy-dropower production capacity of subwatersheds in upstream is much higher than that of the down-stream. The subwatersheds in the upstream with higher water yield are critical to the water supply services in the JRW, which should be conserved when developing the spatial planning and other so-cial-economic planning in the watershed.\",\"PeriodicalId\":349946,\"journal\":{\"name\":\"Journal of Water Resources Research\",\"volume\":\"239 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Resources Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12677/JWRR.2017.64044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Resources Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12677/JWRR.2017.64044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

水电是全球利用最广泛的可更新能源,其生产能力对土地利用/覆被的变化非常敏感。研究土地利用/覆被变化与流域水电生产的数量、价值及其空间分布的关系是流域水资源规划和管理的基础。本论文应用InVEST模型评估九龙江流域土地利用/覆被变化对水电生产数量及其价值的影响。结果表明:2000~2010年间,九龙江流域内,土地利用/覆被主要由蒸散量较大的耕地和林地转化为蒸散量较小的建设用地,产水量增加了0.66%。但由于耕地和建设用地的耗水量较其他土地利用/覆被类型大,水电生产的供水量却降低了8.46%,导致流域年均水电生产量减少1.22亿kwh,年均利润减少0.40亿元,减少幅度分别达到5.56%和6.69%。流域内水电生产数量减少主要是由土地利用/覆被变化大的城市子流域发电量减少引起的。模型验证结果显示,模型结果与实际产水量、发电量的误差分别在6%和5%以内,模型具有很高的可靠性。研究同时显示,九龙江流域产水量由上游向下游递减,上游子流域单位面积和万吨供水量水电生产的潜力最高,对流域水电生产的贡献最大,因此上游子流域的保护对流域水供给服务和水电服务能力的保障非常关键。 As the most widely used form of renewable energy in the world, the hydropower production is very sensitive to the land use and cover change (LUCC). Measuring and mapping changes in the quantity and value of hydropower production are the basis of water resource management and watershed spatial planning. This paper evaluated the impacts of LUCC on the hydropower production in Jiulong River watershed (JRW) employing the reservoir hydropower production and valuation model of InVEST. The results show that the water yield increased by 0.66% from 2000 to 2010 in JRW since LUCC is mainly converted from arable land and forest with higher evapotranspiration to construction land with lower evapotranspiration. However, the annual water supply for power generation decreased by 8.46%, due to the water consumption in arable land and construction land are higher than other land cover type, which resulted in 1.22 × 108 kwh decrease of the annual hydropower production and 4.0 × 107 yuan decrease of net present value separately. The reduction of hydropower production and its value are mainly located in urban subwatersheds whose land use cover change significantly by transforming the forest and arable land to the construction land. The model error is in the range of 6% and 5% of the actual water production and power generation respectively, and the model has high reliability. The results also show that the volume of water yield decreased from upstream to downstream, and the hy-dropower production capacity of subwatersheds in upstream is much higher than that of the down-stream. The subwatersheds in the upstream with higher water yield are critical to the water supply services in the JRW, which should be conserved when developing the spatial planning and other so-cial-economic planning in the watershed.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring and Mapping the Impact of Land Use and Land Cover Change on the Hydropower Production—A Case Study of Jiulong River in Fujian Province
水电是全球利用最广泛的可更新能源,其生产能力对土地利用/覆被的变化非常敏感。研究土地利用/覆被变化与流域水电生产的数量、价值及其空间分布的关系是流域水资源规划和管理的基础。本论文应用InVEST模型评估九龙江流域土地利用/覆被变化对水电生产数量及其价值的影响。结果表明:2000~2010年间,九龙江流域内,土地利用/覆被主要由蒸散量较大的耕地和林地转化为蒸散量较小的建设用地,产水量增加了0.66%。但由于耕地和建设用地的耗水量较其他土地利用/覆被类型大,水电生产的供水量却降低了8.46%,导致流域年均水电生产量减少1.22亿kwh,年均利润减少0.40亿元,减少幅度分别达到5.56%和6.69%。流域内水电生产数量减少主要是由土地利用/覆被变化大的城市子流域发电量减少引起的。模型验证结果显示,模型结果与实际产水量、发电量的误差分别在6%和5%以内,模型具有很高的可靠性。研究同时显示,九龙江流域产水量由上游向下游递减,上游子流域单位面积和万吨供水量水电生产的潜力最高,对流域水电生产的贡献最大,因此上游子流域的保护对流域水供给服务和水电服务能力的保障非常关键。 As the most widely used form of renewable energy in the world, the hydropower production is very sensitive to the land use and cover change (LUCC). Measuring and mapping changes in the quantity and value of hydropower production are the basis of water resource management and watershed spatial planning. This paper evaluated the impacts of LUCC on the hydropower production in Jiulong River watershed (JRW) employing the reservoir hydropower production and valuation model of InVEST. The results show that the water yield increased by 0.66% from 2000 to 2010 in JRW since LUCC is mainly converted from arable land and forest with higher evapotranspiration to construction land with lower evapotranspiration. However, the annual water supply for power generation decreased by 8.46%, due to the water consumption in arable land and construction land are higher than other land cover type, which resulted in 1.22 × 108 kwh decrease of the annual hydropower production and 4.0 × 107 yuan decrease of net present value separately. The reduction of hydropower production and its value are mainly located in urban subwatersheds whose land use cover change significantly by transforming the forest and arable land to the construction land. The model error is in the range of 6% and 5% of the actual water production and power generation respectively, and the model has high reliability. The results also show that the volume of water yield decreased from upstream to downstream, and the hy-dropower production capacity of subwatersheds in upstream is much higher than that of the down-stream. The subwatersheds in the upstream with higher water yield are critical to the water supply services in the JRW, which should be conserved when developing the spatial planning and other so-cial-economic planning in the watershed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信