基于高阶统计量的反滤波图像建模与恢复

Chien-Chung Hsiao, Chong-Yung Chi
{"title":"基于高阶统计量的反滤波图像建模与恢复","authors":"Chien-Chung Hsiao, Chong-Yung Chi","doi":"10.1109/SSAP.1994.572479","DOIUrl":null,"url":null,"abstract":"This paper presents image modeling and restoration by higher-order statistics based 2-D inverse filters. A given original image +(m, n) is processed by an optimum inverse filter v(m, n) which is designed by maximizing cumulant based criteria J r ,m = ICmlr/ICrlm where r is even, m > T 2 2 and C,,, (Cr) denotes mthorder (rth-order cumulant of the output e(m,n) of be modeled as the output of a linear shift-invariant (LSI) system h(m, n) driven by e(m, n) where h(m, n) is a stable inverse filter of v(m,n) . When a blurred image y(m,n) = t(m,n) * g(m,n,) rather than the original image z(m, n) is given, t (m, n) can be restored by first estimating e (m,n) using the previous inverse filter criteria and then obtain t(m,n) = e(m, n) * h(m, n). Some experimental results are provided to support the proposed image modeling and restoration method. the 2-D inverse A Iter. The original image z (m, n) can","PeriodicalId":151571,"journal":{"name":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Image Modeling And Restoration By Higher-order Statistics Based Inverse Filters\",\"authors\":\"Chien-Chung Hsiao, Chong-Yung Chi\",\"doi\":\"10.1109/SSAP.1994.572479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents image modeling and restoration by higher-order statistics based 2-D inverse filters. A given original image +(m, n) is processed by an optimum inverse filter v(m, n) which is designed by maximizing cumulant based criteria J r ,m = ICmlr/ICrlm where r is even, m > T 2 2 and C,,, (Cr) denotes mthorder (rth-order cumulant of the output e(m,n) of be modeled as the output of a linear shift-invariant (LSI) system h(m, n) driven by e(m, n) where h(m, n) is a stable inverse filter of v(m,n) . When a blurred image y(m,n) = t(m,n) * g(m,n,) rather than the original image z(m, n) is given, t (m, n) can be restored by first estimating e (m,n) using the previous inverse filter criteria and then obtain t(m,n) = e(m, n) * h(m, n). Some experimental results are provided to support the proposed image modeling and restoration method. the 2-D inverse A Iter. The original image z (m, n) can\",\"PeriodicalId\":151571,\"journal\":{\"name\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSAP.1994.572479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1994.572479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了基于二维反滤波器的高阶统计量图像建模和恢复方法。给定的原始图像+(m, n)由一个最优逆滤波器v(m,n)处理,该滤波器是根据最大化累积量准则J r,m = ICmlr/ICrlm(其中r为偶数,m > t22和C…)设计的,(Cr)表示该滤波器的输出e(m,n)的m阶(n阶)累积量,该滤波器被建模为由e(m,n)驱动的线性平移不变(LSI)系统h(m, n)的输出,其中h(m, n)是v(m,n)的稳定逆滤波器。当给定模糊图像y(m,n) = t(m,n) * g(m,n,)而不是原始图像z(m, n)时,首先利用之前的反滤波准则估计e(m, n),然后得到t(m,n) = e(m, n) * h(m, n),可以恢复t(m,n)。实验结果支持了所提出的图像建模和恢复方法。二维逆Iter。原始图像z (m, n)可以
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Modeling And Restoration By Higher-order Statistics Based Inverse Filters
This paper presents image modeling and restoration by higher-order statistics based 2-D inverse filters. A given original image +(m, n) is processed by an optimum inverse filter v(m, n) which is designed by maximizing cumulant based criteria J r ,m = ICmlr/ICrlm where r is even, m > T 2 2 and C,,, (Cr) denotes mthorder (rth-order cumulant of the output e(m,n) of be modeled as the output of a linear shift-invariant (LSI) system h(m, n) driven by e(m, n) where h(m, n) is a stable inverse filter of v(m,n) . When a blurred image y(m,n) = t(m,n) * g(m,n,) rather than the original image z(m, n) is given, t (m, n) can be restored by first estimating e (m,n) using the previous inverse filter criteria and then obtain t(m,n) = e(m, n) * h(m, n). Some experimental results are provided to support the proposed image modeling and restoration method. the 2-D inverse A Iter. The original image z (m, n) can
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信