一种基于神经网络的五电平电压馈电逆变器空间矢量PWM

N. Filho, J. Pinto, B. Bose
{"title":"一种基于神经网络的五电平电压馈电逆变器空间矢量PWM","authors":"N. Filho, J. Pinto, B. Bose","doi":"10.1109/IAS.2004.1348779","DOIUrl":null,"url":null,"abstract":"The paper describes an artificial neural network (ANN) based space vector pulse width modulation (SVM) for a five-level voltage-fed inverter. Basically, it uses two multilayer perceptron (MLP) type neural networks. The first ANN uses the amplitude and angle of the reference voltage vector to determine the nearest three vectors (NTV) of the inverter by identifying the triangle wherein the reference vector lies. The second ANN is used to calculate the duty cycles of the three space vectors. An erasable programmable logic device (EPLD) synthesizes the PWM waves. The main advantages of this approach are the fast and simple implementation of the highly complex SVM algorithm for multilevel inverters without loosing precision compared to the conventional DSP-based SVM algorithm. Performance of the inverter using the proposed ANN-based SVM has been investigated extensively, and the results are found to be excellent. The principle described in the paper can be easily extended to an inverter with higher number of levels.","PeriodicalId":131410,"journal":{"name":"Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A neural-network-based space vector PWM of a five-level voltage-fed inverter\",\"authors\":\"N. Filho, J. Pinto, B. Bose\",\"doi\":\"10.1109/IAS.2004.1348779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes an artificial neural network (ANN) based space vector pulse width modulation (SVM) for a five-level voltage-fed inverter. Basically, it uses two multilayer perceptron (MLP) type neural networks. The first ANN uses the amplitude and angle of the reference voltage vector to determine the nearest three vectors (NTV) of the inverter by identifying the triangle wherein the reference vector lies. The second ANN is used to calculate the duty cycles of the three space vectors. An erasable programmable logic device (EPLD) synthesizes the PWM waves. The main advantages of this approach are the fast and simple implementation of the highly complex SVM algorithm for multilevel inverters without loosing precision compared to the conventional DSP-based SVM algorithm. Performance of the inverter using the proposed ANN-based SVM has been investigated extensively, and the results are found to be excellent. The principle described in the paper can be easily extended to an inverter with higher number of levels.\",\"PeriodicalId\":131410,\"journal\":{\"name\":\"Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting.\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.2004.1348779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2004.1348779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

提出了一种基于人工神经网络的空间矢量脉宽调制方法。基本上,它使用两个多层感知器(MLP)类型的神经网络。第一个人工神经网络使用参考电压矢量的幅度和角度,通过识别参考矢量所在的三角形来确定逆变器最近的三个矢量(NTV)。第二个人工神经网络用于计算三个空间向量的占空比。一个可擦除的可编程逻辑器件(EPLD)合成PWM波。与传统的基于dsp的SVM算法相比,该方法的主要优点是能够快速、简单地实现高度复杂的多电平逆变器SVM算法,而不会失去精度。本文对基于人工神经网络的支持向量机逆变器的性能进行了广泛的研究,得到了良好的结果。本文所描述的原理可以很容易地扩展到具有更高电平数的逆变器中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neural-network-based space vector PWM of a five-level voltage-fed inverter
The paper describes an artificial neural network (ANN) based space vector pulse width modulation (SVM) for a five-level voltage-fed inverter. Basically, it uses two multilayer perceptron (MLP) type neural networks. The first ANN uses the amplitude and angle of the reference voltage vector to determine the nearest three vectors (NTV) of the inverter by identifying the triangle wherein the reference vector lies. The second ANN is used to calculate the duty cycles of the three space vectors. An erasable programmable logic device (EPLD) synthesizes the PWM waves. The main advantages of this approach are the fast and simple implementation of the highly complex SVM algorithm for multilevel inverters without loosing precision compared to the conventional DSP-based SVM algorithm. Performance of the inverter using the proposed ANN-based SVM has been investigated extensively, and the results are found to be excellent. The principle described in the paper can be easily extended to an inverter with higher number of levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信