基于增强现实的双足机器人人工辅助在线地形分类

Zahraa Awad, Celine Chibani, Noel Maalouf, Imad H. Elhajjl
{"title":"基于增强现实的双足机器人人工辅助在线地形分类","authors":"Zahraa Awad, Celine Chibani, Noel Maalouf, Imad H. Elhajjl","doi":"10.1109/ROBIO55434.2022.10011705","DOIUrl":null,"url":null,"abstract":"This paper presents an online training system, enhanced with augmented reality, for improving real-time terrain classification by humanoid robots. The real-time terrain type prediction model relies on data acquired from four different sensors (force, position, current, and inertial) of the NAO humanoid robot. We compare the performance of Stochastic Gradient Descent, Passive Aggressive classifier, and Support Vector Machine in predicting the terrain type being traversed. Then, the models are trained online by manually inputting the correct terrain type being traversed to improve the accuracy of the predictions over time. An Augmented Reality (AR) user interface is designed to display the robot diagnostics and terrain type being predicted and obtain the user feedback to correct the terrain type when needed. This allows the user to improve the classification results and enhance the data collection process in the easiest way possible. The experimental results show that the Passive Aggressive classifier is the most successful among the three online classifiers with an accuracy of 81.4%.","PeriodicalId":151112,"journal":{"name":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human-Aided Online Terrain Classification for Bipedal Robots Using Augmented Reality\",\"authors\":\"Zahraa Awad, Celine Chibani, Noel Maalouf, Imad H. Elhajjl\",\"doi\":\"10.1109/ROBIO55434.2022.10011705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an online training system, enhanced with augmented reality, for improving real-time terrain classification by humanoid robots. The real-time terrain type prediction model relies on data acquired from four different sensors (force, position, current, and inertial) of the NAO humanoid robot. We compare the performance of Stochastic Gradient Descent, Passive Aggressive classifier, and Support Vector Machine in predicting the terrain type being traversed. Then, the models are trained online by manually inputting the correct terrain type being traversed to improve the accuracy of the predictions over time. An Augmented Reality (AR) user interface is designed to display the robot diagnostics and terrain type being predicted and obtain the user feedback to correct the terrain type when needed. This allows the user to improve the classification results and enhance the data collection process in the easiest way possible. The experimental results show that the Passive Aggressive classifier is the most successful among the three online classifiers with an accuracy of 81.4%.\",\"PeriodicalId\":151112,\"journal\":{\"name\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO55434.2022.10011705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO55434.2022.10011705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于增强现实技术的人形机器人实时地形分类在线训练系统。实时地形类型预测模型依赖于从NAO人形机器人的四个不同传感器(力、位置、电流和惯性)获取的数据。我们比较了随机梯度下降、被动攻击分类器和支持向量机在预测被穿越的地形类型方面的性能。然后,通过手动输入所穿越的正确地形类型来在线训练模型,以提高预测的准确性。增强现实(AR)用户界面用于显示机器人诊断和预测的地形类型,并在需要时获得用户反馈以纠正地形类型。这允许用户以最简单的方式改进分类结果并增强数据收集过程。实验结果表明,被动攻击分类器是三种在线分类器中最成功的分类器,准确率为81.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human-Aided Online Terrain Classification for Bipedal Robots Using Augmented Reality
This paper presents an online training system, enhanced with augmented reality, for improving real-time terrain classification by humanoid robots. The real-time terrain type prediction model relies on data acquired from four different sensors (force, position, current, and inertial) of the NAO humanoid robot. We compare the performance of Stochastic Gradient Descent, Passive Aggressive classifier, and Support Vector Machine in predicting the terrain type being traversed. Then, the models are trained online by manually inputting the correct terrain type being traversed to improve the accuracy of the predictions over time. An Augmented Reality (AR) user interface is designed to display the robot diagnostics and terrain type being predicted and obtain the user feedback to correct the terrain type when needed. This allows the user to improve the classification results and enhance the data collection process in the easiest way possible. The experimental results show that the Passive Aggressive classifier is the most successful among the three online classifiers with an accuracy of 81.4%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信