低维范围自排斥弹性流形

C. Mueller, E. Neuman
{"title":"低维范围自排斥弹性流形","authors":"C. Mueller, E. Neuman","doi":"10.31390/josa.3.2.01","DOIUrl":null,"url":null,"abstract":"We consider self-repelling elastic manifolds with a domain $[-N,N]^d \\cap \\mathbb{Z}^d$, that take values in $\\mathbb{R}^D$. Our main result states that when the dimension of the domain is $d=2$ and the dimension of the range is $D=1$, the effective radius $R_N$ of the manifold is approximately $N^{4/3}$. This verifies the conjecture of Kantor, Kardar and Nelson [7]. Our results for the case where $d \\geq 3$ and $D<d$ give a lower bound on $R_N$ of order $N^{\\frac{1}{D} \\left(d-\\frac{2(d-D)}{D+2} \\right)}$ and an upper bound proportional to $N^{\\frac{d}{2}+\\frac{d-D}{D+2}}$. These results imply that self-repelling elastic manifolds with a low dimensional range undergo a significantly stronger stretching than in the case where $d=D$, which was studied by the authors in [10].","PeriodicalId":263604,"journal":{"name":"Journal of Stochastic Analysis","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self-Repelling Elastic Manifolds with Low Dimensional Range\",\"authors\":\"C. Mueller, E. Neuman\",\"doi\":\"10.31390/josa.3.2.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider self-repelling elastic manifolds with a domain $[-N,N]^d \\\\cap \\\\mathbb{Z}^d$, that take values in $\\\\mathbb{R}^D$. Our main result states that when the dimension of the domain is $d=2$ and the dimension of the range is $D=1$, the effective radius $R_N$ of the manifold is approximately $N^{4/3}$. This verifies the conjecture of Kantor, Kardar and Nelson [7]. Our results for the case where $d \\\\geq 3$ and $D<d$ give a lower bound on $R_N$ of order $N^{\\\\frac{1}{D} \\\\left(d-\\\\frac{2(d-D)}{D+2} \\\\right)}$ and an upper bound proportional to $N^{\\\\frac{d}{2}+\\\\frac{d-D}{D+2}}$. These results imply that self-repelling elastic manifolds with a low dimensional range undergo a significantly stronger stretching than in the case where $d=D$, which was studied by the authors in [10].\",\"PeriodicalId\":263604,\"journal\":{\"name\":\"Journal of Stochastic Analysis\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31390/josa.3.2.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/josa.3.2.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑具有$[-N,N]^d \cap \mathbb{Z}^d$域的自排斥弹性流形,其取值为$\mathbb{R}^D$。我们的主要结果表明,当域的维数为$d=2$,范围的维数为$D=1$时,流形的有效半径$R_N$近似为$N^{4/3}$。这证实了Kantor、Kardar和Nelson[7]的猜想。对于$d \geq 3$和$D本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Self-Repelling Elastic Manifolds with Low Dimensional Range
We consider self-repelling elastic manifolds with a domain $[-N,N]^d \cap \mathbb{Z}^d$, that take values in $\mathbb{R}^D$. Our main result states that when the dimension of the domain is $d=2$ and the dimension of the range is $D=1$, the effective radius $R_N$ of the manifold is approximately $N^{4/3}$. This verifies the conjecture of Kantor, Kardar and Nelson [7]. Our results for the case where $d \geq 3$ and $D
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信