{"title":"集中证明的统一序贯演算","authors":"Chuck C. Liang, D. Miller","doi":"10.1109/LICS.2009.47","DOIUrl":null,"url":null,"abstract":"We present a compact sequent calculus LKU for classical logic organized around the concept of polarization. Focused sequent calculi for classical logic, intuitionistic logic, and multiplicative-additive linear logic are derived as fragments of LKU by increasing the sensitivity of specialized structural rules to polarity information. We develop a unified, streamlined framework for proving cut-elimination in the various fragments. Furthermore, each sublogic can interact with other fragments through cut. We also consider the possibility of introducing classical-linear hybrid logics.","PeriodicalId":415902,"journal":{"name":"2009 24th Annual IEEE Symposium on Logic In Computer Science","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A Unified Sequent Calculus for Focused Proofs\",\"authors\":\"Chuck C. Liang, D. Miller\",\"doi\":\"10.1109/LICS.2009.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a compact sequent calculus LKU for classical logic organized around the concept of polarization. Focused sequent calculi for classical logic, intuitionistic logic, and multiplicative-additive linear logic are derived as fragments of LKU by increasing the sensitivity of specialized structural rules to polarity information. We develop a unified, streamlined framework for proving cut-elimination in the various fragments. Furthermore, each sublogic can interact with other fragments through cut. We also consider the possibility of introducing classical-linear hybrid logics.\",\"PeriodicalId\":415902,\"journal\":{\"name\":\"2009 24th Annual IEEE Symposium on Logic In Computer Science\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 24th Annual IEEE Symposium on Logic In Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2009.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 24th Annual IEEE Symposium on Logic In Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2009.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a compact sequent calculus LKU for classical logic organized around the concept of polarization. Focused sequent calculi for classical logic, intuitionistic logic, and multiplicative-additive linear logic are derived as fragments of LKU by increasing the sensitivity of specialized structural rules to polarity information. We develop a unified, streamlined framework for proving cut-elimination in the various fragments. Furthermore, each sublogic can interact with other fragments through cut. We also consider the possibility of introducing classical-linear hybrid logics.