面板数据分位数回归的自举推理*

A. Galvao, Thomas Parker, Zhijie Xiao
{"title":"面板数据分位数回归的自举推理*","authors":"A. Galvao, Thomas Parker, Zhijie Xiao","doi":"10.1080/07350015.2023.2210189","DOIUrl":null,"url":null,"abstract":"This paper develops bootstrap methods for practical statistical inference in panel data quantile regression models with fixed effects. We consider random-weighted bootstrap resampling and formally establish its validity for asymptotic inference. The bootstrap algorithm is simple to implement in practice by using a weighted quantile regression estimation for fixed effects panel data. We provide results under conditions that allow for temporal dependence of observations within individuals, thus encompassing a large class of possible empirical applications. Monte Carlo simulations provide numerical evidence the proposed bootstrap methods have correct finite sample properties. Finally, we provide an empirical illustration using the environmental Kuznets curve.","PeriodicalId":118766,"journal":{"name":"Journal of Business & Economic Statistics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bootstrap inference for panel data quantile regression*\",\"authors\":\"A. Galvao, Thomas Parker, Zhijie Xiao\",\"doi\":\"10.1080/07350015.2023.2210189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops bootstrap methods for practical statistical inference in panel data quantile regression models with fixed effects. We consider random-weighted bootstrap resampling and formally establish its validity for asymptotic inference. The bootstrap algorithm is simple to implement in practice by using a weighted quantile regression estimation for fixed effects panel data. We provide results under conditions that allow for temporal dependence of observations within individuals, thus encompassing a large class of possible empirical applications. Monte Carlo simulations provide numerical evidence the proposed bootstrap methods have correct finite sample properties. Finally, we provide an empirical illustration using the environmental Kuznets curve.\",\"PeriodicalId\":118766,\"journal\":{\"name\":\"Journal of Business & Economic Statistics\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business & Economic Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2023.2210189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07350015.2023.2210189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文发展了自举法在面板数据固定效应分位数回归模型中的实际统计推断。我们考虑随机加权自举重抽样,并正式证明了其对渐近推理的有效性。自举算法对固定效应面板数据采用加权分位数回归估计,在实践中实现简单。我们在允许个体观察的时间依赖性的条件下提供结果,从而包含了一大类可能的经验应用。蒙特卡罗模拟提供了数值证据,证明所提出的自举方法具有正确的有限样本性质。最后,我们使用环境库兹涅茨曲线提供了一个实证说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bootstrap inference for panel data quantile regression*
This paper develops bootstrap methods for practical statistical inference in panel data quantile regression models with fixed effects. We consider random-weighted bootstrap resampling and formally establish its validity for asymptotic inference. The bootstrap algorithm is simple to implement in practice by using a weighted quantile regression estimation for fixed effects panel data. We provide results under conditions that allow for temporal dependence of observations within individuals, thus encompassing a large class of possible empirical applications. Monte Carlo simulations provide numerical evidence the proposed bootstrap methods have correct finite sample properties. Finally, we provide an empirical illustration using the environmental Kuznets curve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信