多类心律失常不平衡数据的混合支持向量机分类

Aniruddha J. Joshi, S. Chandran, V. Jayaraman, B. Kulkarni
{"title":"多类心律失常不平衡数据的混合支持向量机分类","authors":"Aniruddha J. Joshi, S. Chandran, V. Jayaraman, B. Kulkarni","doi":"10.1504/IJFIPM.2010.033244","DOIUrl":null,"url":null,"abstract":"Automatically classifying ECG recordings for arrhythmia is difficult since even normal ECG signals exhibit irregularities, and learning algorithms suffer from class imbalance. We propose a hybrid SVM to combat class imbalance rampant in biomedical signals. Consequently, we significantly reduce the number patients falsely classified as normal. The Hybrid SVM is suitable for a variety of multiclass problems; here, we used the MIT-BIH Arrhythmia database, and the position and magnitude of local singularities as features. We enhance relevant singularity-driven Holder features proposed earlier; while the use of these features results in higher accuracy, using the Hybrid SVM shows even more gains.","PeriodicalId":216126,"journal":{"name":"Int. J. Funct. Informatics Pers. Medicine","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hybrid Support Vector Machine for imbalanced data in multiclass arrhythmia classification\",\"authors\":\"Aniruddha J. Joshi, S. Chandran, V. Jayaraman, B. Kulkarni\",\"doi\":\"10.1504/IJFIPM.2010.033244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatically classifying ECG recordings for arrhythmia is difficult since even normal ECG signals exhibit irregularities, and learning algorithms suffer from class imbalance. We propose a hybrid SVM to combat class imbalance rampant in biomedical signals. Consequently, we significantly reduce the number patients falsely classified as normal. The Hybrid SVM is suitable for a variety of multiclass problems; here, we used the MIT-BIH Arrhythmia database, and the position and magnitude of local singularities as features. We enhance relevant singularity-driven Holder features proposed earlier; while the use of these features results in higher accuracy, using the Hybrid SVM shows even more gains.\",\"PeriodicalId\":216126,\"journal\":{\"name\":\"Int. J. Funct. Informatics Pers. Medicine\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Funct. Informatics Pers. Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJFIPM.2010.033244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Funct. Informatics Pers. Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJFIPM.2010.033244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于即使是正常的心电信号也存在不规则性,并且学习算法存在类不平衡的问题,因此对心律失常的心电记录进行自动分类是很困难的。针对生物医学信号中普遍存在的类不平衡问题,提出了一种混合支持向量机。因此,我们显著减少了被错误分类为正常的患者数量。混合支持向量机适用于多种多类问题;在这里,我们使用MIT-BIH心律失常数据库,以及局部奇异点的位置和大小作为特征。我们增强了先前提出的相关奇点驱动Holder特征;虽然使用这些特征可以获得更高的精度,但使用混合支持向量机可以获得更多的收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Support Vector Machine for imbalanced data in multiclass arrhythmia classification
Automatically classifying ECG recordings for arrhythmia is difficult since even normal ECG signals exhibit irregularities, and learning algorithms suffer from class imbalance. We propose a hybrid SVM to combat class imbalance rampant in biomedical signals. Consequently, we significantly reduce the number patients falsely classified as normal. The Hybrid SVM is suitable for a variety of multiclass problems; here, we used the MIT-BIH Arrhythmia database, and the position and magnitude of local singularities as features. We enhance relevant singularity-driven Holder features proposed earlier; while the use of these features results in higher accuracy, using the Hybrid SVM shows even more gains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信