{"title":"混沌资源下的自组织负载分配","authors":"Yong-Hyuk Moon, Yong-Ju Lee","doi":"10.1145/3368235.3369366","DOIUrl":null,"url":null,"abstract":"This paper addresses a question of whether resources suffering nonlinear fluctuations can maintain their stability as a system expands for computing tasks in a distributed manner. To this end, we suggest that by evolving individual resources following the self-organized criticality of sandpile model, the whole load distribution system can reach a stable state after a small but extremely local overhead occurs, leading to lots of avalanches. The proposed load balancing approach is evaluated in terms of latency minimization.","PeriodicalId":166357,"journal":{"name":"Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing Companion","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Self-Organized Load Distribution over Chaotic Resources\",\"authors\":\"Yong-Hyuk Moon, Yong-Ju Lee\",\"doi\":\"10.1145/3368235.3369366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses a question of whether resources suffering nonlinear fluctuations can maintain their stability as a system expands for computing tasks in a distributed manner. To this end, we suggest that by evolving individual resources following the self-organized criticality of sandpile model, the whole load distribution system can reach a stable state after a small but extremely local overhead occurs, leading to lots of avalanches. The proposed load balancing approach is evaluated in terms of latency minimization.\",\"PeriodicalId\":166357,\"journal\":{\"name\":\"Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing Companion\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3368235.3369366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3368235.3369366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Self-Organized Load Distribution over Chaotic Resources
This paper addresses a question of whether resources suffering nonlinear fluctuations can maintain their stability as a system expands for computing tasks in a distributed manner. To this end, we suggest that by evolving individual resources following the self-organized criticality of sandpile model, the whole load distribution system can reach a stable state after a small but extremely local overhead occurs, leading to lots of avalanches. The proposed load balancing approach is evaluated in terms of latency minimization.