Nicolas Brechet, Galatée Ginestet, Jeremie Torres, E. Moradi, L. Ukkonen, T. Björninen, J. Virkki
{"title":"成本和时间有效的缝制图案绣花被动UHF RFID标签","authors":"Nicolas Brechet, Galatée Ginestet, Jeremie Torres, E. Moradi, L. Ukkonen, T. Björninen, J. Virkki","doi":"10.1109/IWAT.2017.7915289","DOIUrl":null,"url":null,"abstract":"Embroidery is an efficient method for the fabrication of textile antennas. We studied the effects of reducing the amount of conductive thread to achieve savings in material costs and the effects of the sewing pattern on the wireless performance of embroidered passive UHF RFID tags on two different fabric substrates. The antennas were sewed on cotton and polyamide fabrics, the ICs were attached to the embroidered antennas with a conductive adhesive, and the wireless performance of the ready-made textile RFID tags was evaluated through measurements. The fabric parameters were found to have a major effect on the tag performance. Based on our results, significant amounts of time and conductive yarn can be saved in the embroidery of RFID tag antennas by only partially sewing the tag antenna.","PeriodicalId":289886,"journal":{"name":"2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Cost- and time-effective sewing patterns for embroidered passive UHF RFID tags\",\"authors\":\"Nicolas Brechet, Galatée Ginestet, Jeremie Torres, E. Moradi, L. Ukkonen, T. Björninen, J. Virkki\",\"doi\":\"10.1109/IWAT.2017.7915289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embroidery is an efficient method for the fabrication of textile antennas. We studied the effects of reducing the amount of conductive thread to achieve savings in material costs and the effects of the sewing pattern on the wireless performance of embroidered passive UHF RFID tags on two different fabric substrates. The antennas were sewed on cotton and polyamide fabrics, the ICs were attached to the embroidered antennas with a conductive adhesive, and the wireless performance of the ready-made textile RFID tags was evaluated through measurements. The fabric parameters were found to have a major effect on the tag performance. Based on our results, significant amounts of time and conductive yarn can be saved in the embroidery of RFID tag antennas by only partially sewing the tag antenna.\",\"PeriodicalId\":289886,\"journal\":{\"name\":\"2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWAT.2017.7915289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAT.2017.7915289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cost- and time-effective sewing patterns for embroidered passive UHF RFID tags
Embroidery is an efficient method for the fabrication of textile antennas. We studied the effects of reducing the amount of conductive thread to achieve savings in material costs and the effects of the sewing pattern on the wireless performance of embroidered passive UHF RFID tags on two different fabric substrates. The antennas were sewed on cotton and polyamide fabrics, the ICs were attached to the embroidered antennas with a conductive adhesive, and the wireless performance of the ready-made textile RFID tags was evaluated through measurements. The fabric parameters were found to have a major effect on the tag performance. Based on our results, significant amounts of time and conductive yarn can be saved in the embroidery of RFID tag antennas by only partially sewing the tag antenna.