基于节点嵌入特征的机器学习动态恶意软件检测技术

Sudhir Kumar Rai, Ashish R. Mittal, Sparsh Mittal
{"title":"基于节点嵌入特征的机器学习动态恶意软件检测技术","authors":"Sudhir Kumar Rai, Ashish R. Mittal, Sparsh Mittal","doi":"10.1109/DSC54232.2022.9888836","DOIUrl":null,"url":null,"abstract":"As the malware menace exacerbates, dynamic malware detection (DMD) has become even more critical. In this paper, we present a machine-learning-based DMD technique. We propose generating node embedding features (NEFs) from process execution chains. We use NEFs and other features based on the command line, file path, and action taken by a process and feed them to our machine learning (ML) classification algorithms. We evaluated two ML classifiers, viz., light gradient boosting machine (LGBM) and XGBoost. We perform experiments on a real-world dataset provided by a leading anti-virus company. Our technique achieves high accuracy, and the use of NEFs improves the predictive performance of ML classification algorithms. Also, NEFs are found to be highly important in both these algorithms.","PeriodicalId":368903,"journal":{"name":"2022 IEEE Conference on Dependable and Secure Computing (DSC)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Node-Embedding Features Based Machine Learning Technique for Dynamic Malware Detection\",\"authors\":\"Sudhir Kumar Rai, Ashish R. Mittal, Sparsh Mittal\",\"doi\":\"10.1109/DSC54232.2022.9888836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the malware menace exacerbates, dynamic malware detection (DMD) has become even more critical. In this paper, we present a machine-learning-based DMD technique. We propose generating node embedding features (NEFs) from process execution chains. We use NEFs and other features based on the command line, file path, and action taken by a process and feed them to our machine learning (ML) classification algorithms. We evaluated two ML classifiers, viz., light gradient boosting machine (LGBM) and XGBoost. We perform experiments on a real-world dataset provided by a leading anti-virus company. Our technique achieves high accuracy, and the use of NEFs improves the predictive performance of ML classification algorithms. Also, NEFs are found to be highly important in both these algorithms.\",\"PeriodicalId\":368903,\"journal\":{\"name\":\"2022 IEEE Conference on Dependable and Secure Computing (DSC)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Conference on Dependable and Secure Computing (DSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSC54232.2022.9888836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Dependable and Secure Computing (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC54232.2022.9888836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着恶意软件威胁的加剧,动态恶意软件检测(DMD)变得更加关键。在本文中,我们提出了一种基于机器学习的DMD技术。我们提出从过程执行链中生成节点嵌入特征(nef)。我们基于命令行、文件路径和进程所采取的动作使用nef和其他特征,并将它们提供给我们的机器学习(ML)分类算法。我们评估了两个ML分类器,即光梯度增强机(LGBM)和XGBoost。我们在一家领先的反病毒公司提供的真实数据集上进行实验。我们的技术达到了很高的准确率,并且nef的使用提高了ML分类算法的预测性能。此外,nef在这两种算法中都非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Node-Embedding Features Based Machine Learning Technique for Dynamic Malware Detection
As the malware menace exacerbates, dynamic malware detection (DMD) has become even more critical. In this paper, we present a machine-learning-based DMD technique. We propose generating node embedding features (NEFs) from process execution chains. We use NEFs and other features based on the command line, file path, and action taken by a process and feed them to our machine learning (ML) classification algorithms. We evaluated two ML classifiers, viz., light gradient boosting machine (LGBM) and XGBoost. We perform experiments on a real-world dataset provided by a leading anti-virus company. Our technique achieves high accuracy, and the use of NEFs improves the predictive performance of ML classification algorithms. Also, NEFs are found to be highly important in both these algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信