LIME:用于调试多线程执行中负载不平衡的框架

Jung-Sub Oh, C. Hughes, Guru Venkataramani, Milos Prvulović
{"title":"LIME:用于调试多线程执行中负载不平衡的框架","authors":"Jung-Sub Oh, C. Hughes, Guru Venkataramani, Milos Prvulović","doi":"10.1145/1985793.1985822","DOIUrl":null,"url":null,"abstract":"With the ubiquity of multi-core processors, software must make effective use of multiple cores to obtain good performance on modern hardware. One of the biggest roadblocks to this is load imbalance, or the uneven distribution of work across cores. We propose LIME, a framework for analyzing parallel programs and reporting the cause of load imbalance in application source code. This framework uses statistical techniques to pinpoint load imbalance problems stemming from both control flow issues (e.g., unequal iteration counts) and interactions between the application and hardware (e.g., unequal cache miss counts). We evaluate LIME on applications from widely used parallel benchmark suites, and show that LIME accurately reports the causes of load imbalance, their nature and origin in the code, and their relative importance.","PeriodicalId":412454,"journal":{"name":"2011 33rd International Conference on Software Engineering (ICSE)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"LIME: a framework for debugging load imbalance in multi-threaded execution\",\"authors\":\"Jung-Sub Oh, C. Hughes, Guru Venkataramani, Milos Prvulović\",\"doi\":\"10.1145/1985793.1985822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the ubiquity of multi-core processors, software must make effective use of multiple cores to obtain good performance on modern hardware. One of the biggest roadblocks to this is load imbalance, or the uneven distribution of work across cores. We propose LIME, a framework for analyzing parallel programs and reporting the cause of load imbalance in application source code. This framework uses statistical techniques to pinpoint load imbalance problems stemming from both control flow issues (e.g., unequal iteration counts) and interactions between the application and hardware (e.g., unequal cache miss counts). We evaluate LIME on applications from widely used parallel benchmark suites, and show that LIME accurately reports the causes of load imbalance, their nature and origin in the code, and their relative importance.\",\"PeriodicalId\":412454,\"journal\":{\"name\":\"2011 33rd International Conference on Software Engineering (ICSE)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 33rd International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1985793.1985822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 33rd International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1985793.1985822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

随着多核处理器的普及,软件必须有效地利用多核才能在现代硬件上获得良好的性能。最大的障碍之一是负载不平衡,或者跨核心的工作分布不均匀。我们提出了LIME,一个用于分析并行程序和报告应用程序源代码中负载不平衡原因的框架。该框架使用统计技术来查明由控制流问题(例如,不相等的迭代计数)和应用程序与硬件之间的交互(例如,不相等的缓存丢失计数)引起的负载不平衡问题。我们在广泛使用的并行基准套件的应用程序上评估了LIME,并表明LIME准确地报告了负载不平衡的原因、它们在代码中的性质和来源,以及它们的相对重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LIME: a framework for debugging load imbalance in multi-threaded execution
With the ubiquity of multi-core processors, software must make effective use of multiple cores to obtain good performance on modern hardware. One of the biggest roadblocks to this is load imbalance, or the uneven distribution of work across cores. We propose LIME, a framework for analyzing parallel programs and reporting the cause of load imbalance in application source code. This framework uses statistical techniques to pinpoint load imbalance problems stemming from both control flow issues (e.g., unequal iteration counts) and interactions between the application and hardware (e.g., unequal cache miss counts). We evaluate LIME on applications from widely used parallel benchmark suites, and show that LIME accurately reports the causes of load imbalance, their nature and origin in the code, and their relative importance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信