步态识别的正则化非相关多线性判别分析

Haiping Lu, K. Plataniotis, A. Venetsanopoulos
{"title":"步态识别的正则化非相关多线性判别分析","authors":"Haiping Lu, K. Plataniotis, A. Venetsanopoulos","doi":"10.1109/BCC.2007.4430540","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel uncorrelated multilinear discriminant analysis (UMLDA) algorithm for the challenging problem of gait recognition. A tensor-to-vector projection (TVP) of tensor objects is formulated and the UMLDA is developed using TVP to extract uncorrelated discriminative features directly from tensorial data. The small-sample-size (SSS) problem present when discriminant solutions are applied to the problem of gait recognition is discussed and a regularization procedure is introduced to address it. The effectiveness of the proposed regularization is demonstrated in the experiments and the regularized UMLDA algorithm is shown to outperform other multilinear subspace solutions in gait recognition.","PeriodicalId":389417,"journal":{"name":"2007 Biometrics Symposium","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Uncorrelated Multilinear Discriminant Analysis with Regularization for Gait Recognition\",\"authors\":\"Haiping Lu, K. Plataniotis, A. Venetsanopoulos\",\"doi\":\"10.1109/BCC.2007.4430540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel uncorrelated multilinear discriminant analysis (UMLDA) algorithm for the challenging problem of gait recognition. A tensor-to-vector projection (TVP) of tensor objects is formulated and the UMLDA is developed using TVP to extract uncorrelated discriminative features directly from tensorial data. The small-sample-size (SSS) problem present when discriminant solutions are applied to the problem of gait recognition is discussed and a regularization procedure is introduced to address it. The effectiveness of the proposed regularization is demonstrated in the experiments and the regularized UMLDA algorithm is shown to outperform other multilinear subspace solutions in gait recognition.\",\"PeriodicalId\":389417,\"journal\":{\"name\":\"2007 Biometrics Symposium\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Biometrics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCC.2007.4430540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Biometrics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCC.2007.4430540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

针对步态识别中的难点问题,提出了一种新的非相关多线性判别分析算法。提出了张量对象的张量向量投影(TVP),并利用TVP直接从张量数据中提取不相关的判别特征,建立了UMLDA。讨论了判别解应用于步态识别问题时存在的小样本问题,并引入正则化方法来解决该问题。实验证明了正则化算法的有效性,并证明了正则化UMLDA算法在步态识别中优于其他多线性子空间解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncorrelated Multilinear Discriminant Analysis with Regularization for Gait Recognition
This paper proposes a novel uncorrelated multilinear discriminant analysis (UMLDA) algorithm for the challenging problem of gait recognition. A tensor-to-vector projection (TVP) of tensor objects is formulated and the UMLDA is developed using TVP to extract uncorrelated discriminative features directly from tensorial data. The small-sample-size (SSS) problem present when discriminant solutions are applied to the problem of gait recognition is discussed and a regularization procedure is introduced to address it. The effectiveness of the proposed regularization is demonstrated in the experiments and the regularized UMLDA algorithm is shown to outperform other multilinear subspace solutions in gait recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信