移动平均滤波的沃尔什变换在无线传感器网络中的数据压缩

Mohamed Elsayed, M. Mahmuddin, A. Badawy, Tarek M. Elfouly, Amr M. Mohamed, K. Abualsaud
{"title":"移动平均滤波的沃尔什变换在无线传感器网络中的数据压缩","authors":"Mohamed Elsayed, M. Mahmuddin, A. Badawy, Tarek M. Elfouly, Amr M. Mohamed, K. Abualsaud","doi":"10.1109/CSPA.2017.8064964","DOIUrl":null,"url":null,"abstract":"Due to the peculiarity of wireless sensor networks (WSNs), where a group of sensors continuously transmit data to other sensors or to the fusion center, it is crucial to compress the transmitted data in order to save the consumed power, which is paramount in the case of portable devices. There exists several techniques for data compression such as discrete wavelet transform (DWT) based, which fails to achieve high compression ratio for an acceptable distortion ratio. In this paper, we explore exploiting Walsh transform with a moving average filtering (MAF) for data compression in WSNs. One application of WSN is wireless body sensor networks. We apply Walsh transform on real Electroencephalogram (EEG) data collected from patients. Furthermore, we compare our results to DWT and show the superiority of exploiting Walsh transform for data compression. We show that using MAF with Walsh transform enhances the compression ratio for up to 30% more than that achieved by DWT.","PeriodicalId":445522,"journal":{"name":"2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Walsh transform with moving average filtering for data compression in wireless sensor networks\",\"authors\":\"Mohamed Elsayed, M. Mahmuddin, A. Badawy, Tarek M. Elfouly, Amr M. Mohamed, K. Abualsaud\",\"doi\":\"10.1109/CSPA.2017.8064964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the peculiarity of wireless sensor networks (WSNs), where a group of sensors continuously transmit data to other sensors or to the fusion center, it is crucial to compress the transmitted data in order to save the consumed power, which is paramount in the case of portable devices. There exists several techniques for data compression such as discrete wavelet transform (DWT) based, which fails to achieve high compression ratio for an acceptable distortion ratio. In this paper, we explore exploiting Walsh transform with a moving average filtering (MAF) for data compression in WSNs. One application of WSN is wireless body sensor networks. We apply Walsh transform on real Electroencephalogram (EEG) data collected from patients. Furthermore, we compare our results to DWT and show the superiority of exploiting Walsh transform for data compression. We show that using MAF with Walsh transform enhances the compression ratio for up to 30% more than that achieved by DWT.\",\"PeriodicalId\":445522,\"journal\":{\"name\":\"2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSPA.2017.8064964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2017.8064964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

由于无线传感器网络(WSNs)的特性,一组传感器不断向其他传感器或融合中心传输数据,压缩传输数据以节省消耗的功率至关重要,这在便携式设备中至关重要。现有的几种数据压缩技术,如基于离散小波变换(DWT)的数据压缩技术,无法在可接受的失真率下实现高压缩比。在本文中,我们探索利用沃尔什变换与移动平均滤波(MAF)在WSNs中的数据压缩。无线传感器网络的一个应用是无线身体传感器网络。将沃尔什变换应用于患者的真实脑电图数据。此外,我们将我们的结果与DWT进行了比较,并显示了利用Walsh变换进行数据压缩的优越性。我们表明,使用MAF与沃尔什变换可以比DWT提高30%的压缩比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Walsh transform with moving average filtering for data compression in wireless sensor networks
Due to the peculiarity of wireless sensor networks (WSNs), where a group of sensors continuously transmit data to other sensors or to the fusion center, it is crucial to compress the transmitted data in order to save the consumed power, which is paramount in the case of portable devices. There exists several techniques for data compression such as discrete wavelet transform (DWT) based, which fails to achieve high compression ratio for an acceptable distortion ratio. In this paper, we explore exploiting Walsh transform with a moving average filtering (MAF) for data compression in WSNs. One application of WSN is wireless body sensor networks. We apply Walsh transform on real Electroencephalogram (EEG) data collected from patients. Furthermore, we compare our results to DWT and show the superiority of exploiting Walsh transform for data compression. We show that using MAF with Walsh transform enhances the compression ratio for up to 30% more than that achieved by DWT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信