广义二阶Reed-Muller帧的啁啾重构算法

Renaud-Alexandre Pitaval, Yi Qin
{"title":"广义二阶Reed-Muller帧的啁啾重构算法","authors":"Renaud-Alexandre Pitaval, Yi Qin","doi":"10.1109/ITW48936.2021.9611492","DOIUrl":null,"url":null,"abstract":"We consider low-complexity decoding of generalized second-order Reed-Muller frames. Second-order Reed-Muller frames are highly non-coherent, highly-structured, sets of $2^{m_{-}}$ dimensional complex vectors with fourth root-of-unity alphabet, that come by design with a low-complexity chirp reconstruction algorithm (ChirpRA). In this paper, we extend ChirpRA to expanded frames in 2m-dimension with same alphabet, and we also generalized it to Reed-Muller frames in other dimensions constructed from different alphabets.","PeriodicalId":325229,"journal":{"name":"2021 IEEE Information Theory Workshop (ITW)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chirp Reconstruction Algorithm for Generalized Second-Order Reed-Muller Frames\",\"authors\":\"Renaud-Alexandre Pitaval, Yi Qin\",\"doi\":\"10.1109/ITW48936.2021.9611492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider low-complexity decoding of generalized second-order Reed-Muller frames. Second-order Reed-Muller frames are highly non-coherent, highly-structured, sets of $2^{m_{-}}$ dimensional complex vectors with fourth root-of-unity alphabet, that come by design with a low-complexity chirp reconstruction algorithm (ChirpRA). In this paper, we extend ChirpRA to expanded frames in 2m-dimension with same alphabet, and we also generalized it to Reed-Muller frames in other dimensions constructed from different alphabets.\",\"PeriodicalId\":325229,\"journal\":{\"name\":\"2021 IEEE Information Theory Workshop (ITW)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW48936.2021.9611492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW48936.2021.9611492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究广义二阶Reed-Muller帧的低复杂度解码。二阶Reed-Muller帧是高度非相干、高度结构化的$2^{m_{-}}$维复向量集合,具有第四单位根字母表,通过设计低复杂度啁啾重构算法(ChirpRA)而来。本文将ChirpRA扩展到2m维相同字母的扩展帧,并将其推广到由不同字母构成的其他维Reed-Muller帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chirp Reconstruction Algorithm for Generalized Second-Order Reed-Muller Frames
We consider low-complexity decoding of generalized second-order Reed-Muller frames. Second-order Reed-Muller frames are highly non-coherent, highly-structured, sets of $2^{m_{-}}$ dimensional complex vectors with fourth root-of-unity alphabet, that come by design with a low-complexity chirp reconstruction algorithm (ChirpRA). In this paper, we extend ChirpRA to expanded frames in 2m-dimension with same alphabet, and we also generalized it to Reed-Muller frames in other dimensions constructed from different alphabets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信