结构整数矩阵和多项式的近最优符号-数值算法

V. Pan, B. Murphy, R. Rosholt
{"title":"结构整数矩阵和多项式的近最优符号-数值算法","authors":"V. Pan, B. Murphy, R. Rosholt","doi":"10.1145/1577190.1577209","DOIUrl":null,"url":null,"abstract":"Our unified superfast algorithms for solving Toeplitz, Hankel, Vandermonde, Cauchy, and other structured linear systems of equations with integer coefficients combine Hensel's symbolic lifting and numerical iterative refinement and run in nearly optimal randomized Boolean time for both solution and its correctness verification. The algorithms and nearly optimal time bounds are extended to some fundamental computations with univariate polynomials that have integer coefficients. Furthermore, we develop lifting modulo powers of two to implement our algorithms in the binary mode within a fixed precision.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Nearly optimal symbolic-numerical algorithms for structured integer matrices and polynomials\",\"authors\":\"V. Pan, B. Murphy, R. Rosholt\",\"doi\":\"10.1145/1577190.1577209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our unified superfast algorithms for solving Toeplitz, Hankel, Vandermonde, Cauchy, and other structured linear systems of equations with integer coefficients combine Hensel's symbolic lifting and numerical iterative refinement and run in nearly optimal randomized Boolean time for both solution and its correctness verification. The algorithms and nearly optimal time bounds are extended to some fundamental computations with univariate polynomials that have integer coefficients. Furthermore, we develop lifting modulo powers of two to implement our algorithms in the binary mode within a fixed precision.\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1577190.1577209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1577190.1577209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们统一的超高速算法用于求解Toeplitz, Hankel, Vandermonde, Cauchy和其他具有整数系数的结构化线性方程组,结合了Hensel的符号提升和数值迭代改进,并在解及其正确性验证的近最佳随机布尔时间内运行。将算法和近似最优时间范围推广到具有整数系数的单变量多项式的一些基本计算中。此外,我们发展了2的提升模幂,以在固定精度的二进制模式下实现我们的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nearly optimal symbolic-numerical algorithms for structured integer matrices and polynomials
Our unified superfast algorithms for solving Toeplitz, Hankel, Vandermonde, Cauchy, and other structured linear systems of equations with integer coefficients combine Hensel's symbolic lifting and numerical iterative refinement and run in nearly optimal randomized Boolean time for both solution and its correctness verification. The algorithms and nearly optimal time bounds are extended to some fundamental computations with univariate polynomials that have integer coefficients. Furthermore, we develop lifting modulo powers of two to implement our algorithms in the binary mode within a fixed precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信